Columbia An Employee - Owned Company

RECEIVED

SEP 15 2006

Weston Solutions, Inc.

of Michigan

September 5, 2006

Mr. Ted LaMarre Weston Solutions of Michigan, Inc. 2501 Jolly Road, Suite 100 Okemos, MI 48864

RE: P2602262 WRS/WES0504

Dear Mr. LaMarre:

Enclosed are the results of the sample(s) submitted to our laboratory on August 18, 2006. For your reference, these analyses have been assigned our service request number P2602262.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report. Your report contains / pages.

Columbia Analytical Services is certified by the California Department of Health Services, Certificate No. 2380; Arizona Department of Health Services, Certificate No. AZ0550; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661. Please contact me for specific method(s) and analyte(s) corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Kate Spails

Columbia Analytical Services, Inc.

Kate Aguilera **Project Manager** 



#### LABORATORY REPORT

Client:

WESTON SOLUTIONS OF MICHIGAN, INC.

Date of Report:

09/05/06

Address:

2501 Jolly Road, Suite 100

Date Received:

08/18/06

Okemos, MI 48864

CAS Project No:

P2602262

Contact:

Mr. Ted LaMarre

Purchase Order:

Verbal

Client Project ID: WRS/WES0504

One (1) Stainless Steel Silco Canister labeled:

"10125 Munro-081706"

The sample was received at the laboratory under chain of custody on August 18, 2006. The sample was received intact. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the sample at the time that it was received at the laboratory.

# Sulfur Analysis

The sample was analyzed for twenty sulfur compounds per ASTM D 5504-01 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan.

The results of analyses are given on the attached data sheets. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Reviewed and Approved:

Reviewed and Approved:

Zheng Wang

**Analytical Chemist** Air Quality Laboratory Wade Henton

GC-VOA Team Leader Air Quality Laboratory

#### **RESULTS OF ANALYSIS**

Page 1 of 1

**Client:** 

Weston Solutions of Michigan, Inc.

Client Sample ID: 10125 Munro-081706

Client Project ID: WRS/WES0504

CAS Project ID: P2602262

CAS Sample ID: P2602262-001

Test Code:

ASTM D 5504-01

Instrument ID:

Agilent 6890A/GC13/SCD

Analyst:

Zheng Wang

Sampling Media:

Silco Canister

Test Notes:

Container ID:

SL00100

Date Collected: 08/17/06

Time Collected: 08:38

Date Received: 08/18/06

Date Analyzed: 8/23/06

Time Analyzed: 14:54

Volume(s) Analyzed:

1.0 ml(s)

Pi 1 =0.0 Pf 1 = 5.5

D.F.= 1.37

|           |                       | Result | MRL   | Result | MRL  | Data      |
|-----------|-----------------------|--------|-------|--------|------|-----------|
| CAS#      | Compound              | •      |       |        | į    | Qualifier |
|           | <u> </u>              | μg/m³  | μg/m³ | ppbV . | ppbV | <u> </u>  |
| 7783-06-4 | Hydrogen Sulfide      | ND     | 9.6   | ND     | 6.9  |           |
| 463-58-1  | Carbonyl Sulfide      | ND     | 17    | ND     | 6.9  |           |
| 74-93-1   | Methyl Mercaptan      | ND     | 14    | ND     | 6.9  |           |
| 75-08-1   | Ethyl Mercaptan       | ND     | 17    | ND     | 6.9  |           |
| 75-18-3   | Dimethyl Sulfide      | ND     | 17    | ND     | 6.9  |           |
| 75-15-0   | Carbon Disulfide      | ND     | 11    | ND     | 3.4  |           |
| 75-33-2   | Isopropyl Mercaptan   | ND     | 21    | ND     | 6.9  |           |
| 75-66-1   | tert-Butyl Mercaptan  | ND     | 25    | ND     | 6.9  |           |
| 107-03-9  | n-Propyl Mercaptan    | ND     | 21    | ND     | 6.9  |           |
| 624-89-5  | Ethyl Methyl Sulfide  | ND     | 21    | ND     | 6.9  |           |
| 110-02-1  | Thiophene             | ND     | 24    | ND     | 6.9  |           |
| 513-44-0  | Isobutyl Mercaptan    | ND     | 25    | ND     | 6.9  | 1         |
| 352-93-2  | Diethyl Sulfide       | ND     | 25    | ND     | 6.9  |           |
| 109-79-5  | n-Butyl Mercaptan     | ND     | 25    | ND     | 6.9  |           |
| 624-92-0  | Dimethyl Disulfide    | ND.    | 13    | ND     | 3.4  |           |
| 616-44-4  | 3-Methylthiophene     | ND     | 28    | ND     | 6.9  |           |
| 110-01-0  | Tetrahydrothiophene   | ND     | 25    | · ND   | 6.9  |           |
| 638-02-8  | 2,5-Dimethylthiophene | ND     | 32    | ND     | 6.9  |           |
| 872-55-9  | 2-Ethylthiophene      | ND     | 32    | ND     | 6.9  |           |
| 110-81-6  | Diethyl Disulfide     | ND :   | 17    | ND     | 3.4  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

\_Date: 7/1/06 Verified By:

#### **RESULTS OF ANALYSIS** Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Method Blank

Client Project ID: WRS/WES0504

CAS Project ID: P2602262

CAS Sample ID: P060823-MB

Test Code:

ASTM D 5504-01

Instrument ID:

Agilent 6890A/GC13/SCD

Analyst:

Zheng Wang

Sampling Media:

Silco Canister

Test Notes:

Date Collected: NA Time Collected: NA Date Received: NA

Date Analyzed: 8/23/06

Time Analyzed: 09:59

Volume(s) Analyzed:

1.0 ml(s)

D.F.=1.00

|           | 1                     | Result | MRL   | Result | MRL  | Data      |
|-----------|-----------------------|--------|-------|--------|------|-----------|
| CAS#      | Compound              |        |       |        |      | Qualifier |
|           | <u> </u>              | μg/m³  | μg/m³ | ppbV   | ppbV |           |
| 7783-06-4 | Hydrogen Sulfide      | ND     | 7.0   | ND     | 5.0  | 1         |
| 463-58-1  | Carbonyl Sulfide      | ND     | 12    | ND     | 5.0  |           |
| 74-93-1   | Methyl Mercaptan      | ND     | 9.8   | ND     | 5.0  |           |
| 75-08-1   | Ethyl Mercaptan       | ND     | 13    | ND     | 5.0  |           |
| 75-18-3   | Dimethyl Sulfide      | ND     | 13    | ND     | 5.0  |           |
| 75-15-0   | Carbon Disulfide      | ND     | 7.8   | ND     | 2.5  |           |
| 75-33-2   | Isopropyl Mercaptan   | ND     | 16    | ND     | 5.0  |           |
| 75-66-1   | tert-Butyl Mercaptan  | ND     | 18    | ND     | 5.0  |           |
| 107-03-9  | n-Propyl Mercaptan    | ND     | 16    | ND     | 5.0  |           |
| 624-89-5  | Ethyl Methyl Sulfide  | ND     | 16    | ND     | 5.0  |           |
| 110-02-1  | Thiophene             | , ND   | 17    | ND     | 5.0  | l         |
| 513-44-0  | Isobutyl Mercaptan    | ND     | 18    | . ND   | 5.0  | 1         |
| 352-93-2  | Diethyl Sulfide       | ND     | 18    | ND     | 5.0  |           |
| 109-79-5  | n-Butyl Mercaptan     | ND     | 18    | ND     | 5.0  |           |
| 624-92-0  | Dimethyl Disulfide    | ND     | 9.6   | ND     | 2.5  |           |
| 616-44-4  | 3-Methylthiophene     | ND     | 20    | ND     | 5.0  | 1         |
| 110-01-0  | Tetrahydrothiophene   | ND     | 18    | ND     | 5.0  | 1         |
| 638-02-8  | 2,5-Dimethylthiophene | ND     | 23    | ND     | 5.0  | 1         |
| 872-55-9  | 2-Ethylthiophene      | ND     | 23    | ND     | 5.0  |           |
| 110-81-6  | Diethyl Disulfide     | ND     | 12    | ND     | 2.5  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

| Verified By:_ | NS | Date: | 9/1/06 | - |
|---------------|----|-------|--------|---|
|---------------|----|-------|--------|---|

#### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Client Project ID: **Lab Control Sample** 

WRS/WES0504

CAS Project ID: P2602262

CAS Sample ID: P060823-LCS

# **Laboratory Control Sample Summary**

Test Code:

ASTM D 5504-01

Instrument ID:

Agilent 6890A/GC13/SCD

Analyst:

Zheng Wang

Sampling Media:

Silco Canister

Date Sampled: NA

Date Received: NA

Date Analyzed: 8/23/06

Volume(s) Analyzed: NA

| Compound         | Spike Amount<br>LCS<br>ppbV | Result<br>LCS<br>ppbV | % Recovery<br>LCS | CAS Acceptance Limits | Data<br>Qualifier |
|------------------|-----------------------------|-----------------------|-------------------|-----------------------|-------------------|
| Hydrogen Sulfide | 1,980                       | 1,530                 | 77                | 70-129                |                   |
| Carbonyl Sulfide | 2,130                       | 1,850                 | 87                | 80-138                |                   |
| Methyl Mercaptan | 2,080                       | 1,950                 | 94                | 78-128                |                   |

Verified By: Date: 4/1/06

# Columbia Analytical Services, Inc. Sample Acceptance Check Form

| Clien             | t: Weston Solutio      | ons of M   |                                        | npie Acceptance Checi                                         | Work order:                         | P2602262            |                       |           |                     |
|-------------------|------------------------|------------|----------------------------------------|---------------------------------------------------------------|-------------------------------------|---------------------|-----------------------|-----------|---------------------|
| Projec            | t: WRS/WES050          | )4         |                                        |                                                               |                                     |                     |                       |           |                     |
|                   | Sample(s) recei        | ved on:    | 8/18/06                                | Date opened:                                                  | 8/18/06                             | by:                 | MZ                    |           |                     |
|                   |                        |            |                                        | this form for custody seals is str                            |                                     |                     |                       | indicatio | n of                |
| complianc         | ce or nonconformity. T | hermal pre | eservation and pH will only            | y be evaluated either at the reque                            | est of the client or as req         | uired by the methor |                       |           | ****                |
|                   |                        |            |                                        |                                                               |                                     |                     | Yes                   | No        | N/A                 |
| 1                 |                        |            | outside of cooler/Box?                 | )                                                             |                                     |                     |                       | ×         |                     |
|                   | Location of se         | -          |                                        |                                                               |                                     | Sealing Lid?        |                       |           | X                   |
|                   | Were signature         |            | te included?                           |                                                               |                                     |                     |                       |           | ×                   |
|                   | Were seals int         |            |                                        |                                                               |                                     |                     |                       |           | ×                   |
|                   |                        |            | utside of sample conta                 | ainer'?                                                       |                                     |                     |                       | ×         |                     |
|                   | Location of se         | _          |                                        |                                                               |                                     | _Sealing Lid?       |                       |           | ×                   |
|                   | Were signatur          |            | te included?                           |                                                               |                                     |                     |                       |           | ×                   |
|                   | Were seals int         |            |                                        |                                                               |                                     |                     |                       |           | $\overline{\times}$ |
| 2                 |                        |            | s properly marked wit                  |                                                               |                                     |                     | $\boxtimes$           |           |                     |
| 3                 | •                      |            | arrive in good condition               |                                                               |                                     |                     | X                     |           |                     |
| 4                 |                        |            | papers used and filled                 |                                                               |                                     |                     | X                     |           |                     |
| 5                 | -                      |            |                                        | e with custody papers?                                        |                                     |                     | X                     |           |                     |
| 6                 | -                      |            | eived adequate for an                  | alysis'?                                                      |                                     |                     | X                     |           |                     |
| 7                 |                        |            | ified holding times?                   | · · · · · · · · · · · · · · · · · · ·                         | 1.0                                 |                     | $\boxtimes$           |           |                     |
| 8                 | Was proper tem         | peratur    |                                        | on) of cooler at receipt adh                                  |                                     |                     |                       |           | X                   |
|                   |                        |            | Cooler Temperatur                      | e NA                                                          | °C<br>°C                            |                     |                       |           |                     |
| 0                 | In all (unid) and      |            |                                        | e NA                                                          | •                                   | i0                  |                       |           | X                   |
| 9                 |                        |            |                                        | ag to method/SOP or Clien<br>samples are <b>pH</b> (acid) pro | •                                   | 1011 ?              |                       |           | $\times$            |
|                   |                        |            | ed for presence/absen                  |                                                               | escived?                            |                     |                       |           | X                   |
|                   | 2002-000               |            |                                        | analyst check the sample p                                    | Hand if necessary                   | alter it?           |                       |           | X                   |
| 10                | Tubes:                 |            | e tubes capped and in                  |                                                               | ir and ir necessary                 | arter it:           |                       |           | ×                   |
|                   | Tubes.                 |            | ey contain moisture?                   | ituot.                                                        |                                     |                     |                       |           | ×                   |
| 11                | Badges:                |            | he badges properly ca                  | pped and intact?                                              |                                     |                     |                       |           | ×                   |
|                   | _ uugus                |            |                                        | ted and individually cappe                                    | d and intact?                       |                     |                       |           | ×                   |
|                   | 1 - L C L - IDS        |            | D : 1 E                                | 117                                                           | l voi ii i                          |                     | · n                   |           |                     |
|                   | Lab Sample ID          |            | Required pH (as received, if required) | pH (as received, if required)                                 | VOA Headspace<br>(Presence/Absence) | Kece                | ipt / Prese<br>Commen |           |                     |
| P26022            | 62-001                 |            |                                        |                                                               | NA                                  |                     |                       |           |                     |
|                   |                        |            |                                        |                                                               |                                     |                     |                       |           |                     |
|                   |                        |            |                                        |                                                               |                                     |                     |                       |           |                     |
|                   |                        |            |                                        |                                                               |                                     |                     |                       |           |                     |
| ***************** |                        |            | 3                                      |                                                               |                                     |                     | <del></del>           |           |                     |
|                   |                        |            |                                        |                                                               |                                     |                     |                       |           |                     |
|                   |                        |            |                                        |                                                               |                                     | 9                   |                       |           |                     |
|                   |                        |            |                                        |                                                               |                                     |                     | 3                     |           |                     |
| Б                 |                        | · ·        | 1.1.1                                  | 1                                                             |                                     |                     |                       |           |                     |
| Explai            | n any discrepancie     | s: (includ | de lab sample ID num                   | ibers):                                                       |                                     |                     |                       |           |                     |

Chain of Custody Record & Analytical Service Request

| Page | of |
|------|----|

| Columbia Analytical Services Columbia Services Columbia Simi Valley, California 93065 Phone (805) 526-7161 |                   |                                                  |                                                  |                                                  | Day (100%) 2.Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (15%) 10 Day-Standard  CAS Project No. |                                          |                              |                                                  |              |              |                              |                                            |
|------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|------------------------------|--------------------------------------------------|--------------|--------------|------------------------------|--------------------------------------------|
|                                                                                                            | Fax (805) 52      |                                                  | ı                                                | 1 Bay (10075)                                    | E.Day (1570)                                                                                | 0 Day (0070) 4 D                         | ay (00 /0) 0 Day             | CAS Contact:                                     | Claridaid    |              | HAEU                         | 4-00-                                      |
| Reporting Information (Company                                                                             |                   |                                                  | <del></del>                                      | PO #/Billin                                      | n Information                                                                               | <del></del>                              |                              | Jorno Comaci.                                    |              |              | Į.                           |                                            |
| ART TO                                                                                                     |                   |                                                  |                                                  | Lieston                                          | g Information Solution                                                                      | 2                                        |                              | <del></del>                                      |              | <del></del>  |                              | ł                                          |
| GRT, Inc                                                                                                   |                   | •                                                |                                                  | Okemos MI                                        |                                                                                             |                                          | Analysis Method and/or Analy |                                                  |              | nalytes      | j                            |                                            |
| Tod Cass Silect                                                                                            |                   | Ou .                                             |                                                  |                                                  |                                                                                             |                                          |                              |                                                  | -            |              |                              |                                            |
| 1102 Cass Street<br>Traverse City MI 49684                                                                 |                   |                                                  |                                                  | Kat                                              | ie Yrioc                                                                                    | onew                                     |                              | 1,                                               |              |              | 1                            | [                                          |
| Attention: Nancy Posavotry                                                                                 |                   |                                                  |                                                  | Project Name                                     | WR!                                                                                         | S                                        |                              | Suffer                                           |              | ,            |                              | g .                                        |
| Phone Fax 231-941-4131                                                                                     |                   |                                                  | 4131                                             | Project Numb                                     | Der WES                                                                                     | 50504                                    |                              | <b>)</b> 3                                       |              |              |                              | e.g. Preservative or specific instructions |
| Email Address for Result Report                                                                            | ing<br>tusa,      | com                                              |                                                  | Sampler (Prin                                    | nt & Sign)                                                                                  | <del> </del>                             |                              | Reduce                                           |              |              | apacinic instructions        |                                            |
| Client Sample ID                                                                                           | Date<br>Collected | 1                                                | Lab<br>Sample No.                                | Sample Type<br>(Air/Liquid<br>/Solid/Tube)       | Canister ID<br>(Bar Code#)                                                                  | Flow Controller<br>(Bar Code #)          | Sample<br>Volume             | Red<br>Red                                       |              |              |                              |                                            |
| 10125 Munro-08179                                                                                          | 8/17/06           | 0838                                             | 0                                                | Silco                                            | SN# 1113                                                                                    | NA                                       | Grab                         | X                                                |              |              |                              |                                            |
|                                                                                                            |                   |                                                  |                                                  |                                                  | - <b>、</b>                                                                                  | · .                                      | j .                          | 1                                                | l·           |              |                              | •                                          |
|                                                                                                            |                   |                                                  |                                                  |                                                  |                                                                                             |                                          |                              |                                                  |              |              |                              |                                            |
|                                                                                                            |                   |                                                  | ·                                                |                                                  |                                                                                             |                                          |                              | <del> </del>                                     | <del> </del> | ļ            |                              |                                            |
|                                                                                                            |                   |                                                  |                                                  | •                                                |                                                                                             |                                          | "                            |                                                  |              |              |                              |                                            |
|                                                                                                            |                   |                                                  |                                                  |                                                  |                                                                                             |                                          |                              |                                                  |              |              |                              |                                            |
|                                                                                                            |                   |                                                  | <u> </u>                                         | ļ <del>.</del>                                   |                                                                                             | <u> </u>                                 | <b> </b>                     | ļ                                                | ļ            | <b> </b>     |                              |                                            |
|                                                                                                            |                   | Į                                                |                                                  |                                                  | i                                                                                           | ļ                                        | İ                            |                                                  | i            | l            | ļ                            |                                            |
|                                                                                                            |                   |                                                  |                                                  | <del>                                     </del> |                                                                                             |                                          |                              | · ·                                              |              |              |                              |                                            |
| , , <u>, , , , , , , , , , , , , , , , , </u>                                                              | ļ                 | <u> </u>                                         | <u> </u>                                         |                                                  |                                                                                             |                                          | <u> </u>                     | <u> </u>                                         |              |              |                              |                                            |
|                                                                                                            | 1                 |                                                  | İ                                                |                                                  | i                                                                                           |                                          | İ                            | 1.                                               |              | ļ ·          | ì                            |                                            |
|                                                                                                            |                   | <del>                                     </del> | <del>                                     </del> | <del> </del>                                     | <del> </del>                                                                                | •                                        | <u> </u>                     | +                                                | +            |              | <del> </del>                 |                                            |
|                                                                                                            |                   | <u> </u>                                         |                                                  |                                                  |                                                                                             |                                          |                              |                                                  |              |              | <u> </u>                     |                                            |
|                                                                                                            |                   |                                                  |                                                  | -                                                |                                                                                             |                                          |                              |                                                  |              | Į.           |                              |                                            |
|                                                                                                            | <del> </del>      | <del> </del>                                     | <del> </del>                                     |                                                  | <del></del>                                                                                 | <del> </del>                             | <del> </del>                 | <del></del>                                      | <del> </del> | <del> </del> |                              |                                            |
|                                                                                                            |                   |                                                  |                                                  |                                                  |                                                                                             |                                          |                              |                                                  | i            |              |                              |                                            |
|                                                                                                            |                   |                                                  |                                                  |                                                  |                                                                                             |                                          |                              |                                                  |              |              |                              |                                            |
|                                                                                                            | <del></del>       | <del> </del>                                     | <del> </del>                                     | <u> </u>                                         | <del> </del>                                                                                | ļ. · · · · · · · · · · · · · · · · · · · | <u> </u>                     | <del>                                     </del> | <del> </del> | <del> </del> | <del> </del>                 |                                            |
|                                                                                                            |                   |                                                  |                                                  |                                                  | ļ                                                                                           |                                          |                              | 1                                                |              |              |                              |                                            |
|                                                                                                            |                   |                                                  |                                                  |                                                  |                                                                                             | 1                                        |                              |                                                  |              |              |                              |                                            |
|                                                                                                            | <del> </del>      | <del> </del>                                     | <del> </del>                                     | ļ                                                | <del> </del>                                                                                | <del> </del>                             | <del> </del>                 | <del></del>                                      | ļ            | <del> </del> | <del>- </del>                |                                            |
|                                                                                                            | 1                 |                                                  |                                                  |                                                  |                                                                                             | 1                                        |                              | 1.                                               |              |              | 1                            |                                            |
| Report Tier Levels - please sele<br>Tier I - (default if not specified) _<br>Tier II (QC forms)            | ct                | Tier III (QC                                     | , Raw Data, S                                    | Spectra) 10%                                     | Surcharge                                                                                   | · · · · · · · · · · · · · · · · · · ·    | EDD required                 | Yes / No                                         |              | · .          | Project Requ                 | lrements (MRLs, QAPP)                      |
| Refindationed by (Gignature)                                                                               |                   |                                                  | 8/17/08                                          | Time:                                            | Received by: (5                                                                             | Signature)                               |                              |                                                  | Date:        | Time:        |                              | $\dot{k}_{n-j}$                            |
| Relinquished by: (Signature)                                                                               |                   |                                                  | Date:                                            | Time:                                            | Received by: (                                                                              | Signature)                               |                              |                                                  | Date:        | Time:        |                              | ·<br>· · ·· ·                              |
| Relinquished by: (Signature)                                                                               |                   |                                                  | Date:                                            | Time:                                            | Received by: (                                                                              | Signature)                               |                              |                                                  | Date:        | Time:        | Cooler / Blar<br>Temperature |                                            |
|                                                                                                            |                   |                                                  |                                                  |                                                  |                                                                                             |                                          |                              |                                                  |              |              |                              |                                            |



July 14, 2006

Ms. Katie Mooney Weston Solutions of Michigan, Inc. 2501 Jolly Road, Suite 100 Okemos, MI 48864

RE: P2601798 WRS/WES0504 RECEIVED

JUL 2 1 2006

Weston Solutions, inc. of Michigan

Dear Ms. Mooney:

Enclosed are the results of the sample(s) submitted to our laboratory on July 10, 2006. For your reference, these analyses have been assigned our service request number P2601798.

Columbia Analytical Services is certified by the California Department of Health Services, Certificate No. 2380; Arizona Department of Health Services, Certificate No. AZ0550; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No. 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661. Please contact me for specific method(s) and analyte(s) corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Katelgalles

Kate Aguilera Project Manager

Page 1 of 7





#### LABORATORY REPORT

Client:

WESTON SOLUTIONS OF MICHIGAN, INC.

Date of Report:

07/14/06

Address:

2501 Jolly Road, Suite 100

Date Received:

07/10/06

**Okemos**, MI 48864

CAS Project No:

P2601798

Contact:

Ms. Katie Mooney

Purchase Order:

Verbal

Client Project ID: WRS/WES0504

One (1) Stainless Steel Silco Canister labeled:

"10329 ELR"

The sample was received at the laboratory under chain of custody on July 10, 2006. The client requested and received two day rush results. The sample was received intact. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the sample at the time that it was received at the laboratory.

#### Sulfur Analysis

The sample was analyzed for twenty sulfur compounds per ASTM D 5504-01 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan.

The results of analyses are given on the attached data sheets. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Reviewed and Approved:

Reviewed and Approved:

Zheng Wang **Analytical Chemist** Air Quality Laboratory

Wade Henton GC-VOA Team Leader Air Quality Laboratory

### **RESULTS OF ANALYSIS** Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Project ID: WRS/WES0504

Client Sample ID: 10329 ELR

CAS Project ID: P2601798

CAS Sample ID: P2601798-001

Test Code:

ASTM D 5504-01

Instrument ID:

Agilent 6890A/GC13/SCD

Analyst:

Zheng Wang

Sampling Media:

Silco Canister

Test Notes:

Container ID:

SL00103

Date Collected: 7/7/06

Time Collected: 20:50

Date Received: 7/10/06

Date Analyzed: 7/10/06

Time Analyzed: 11:36

Volume(s) Analyzed:

1.0 ml(s)

Pi 1 = -0.6 Pf 1 = 2.1

D.F.= 1.19

|           |                       | Result | MRL   | Result | MRL  | Data      |
|-----------|-----------------------|--------|-------|--------|------|-----------|
| CAS#      | Compound              |        |       |        |      | Qualifier |
|           | <u> </u>              | μg/m³  | μg/m³ | ppbV   | ppbV |           |
| 7783-06-4 | Hydrogen Sulfide      | ND     | 8.3   | ND     | 6.0  |           |
| 463-58-1  | Carbonyl Sulfide      | ND     | 15    | ND     | 6.0  |           |
| 74-93-1   | Methyl Mercaptan      | ND     | 12    | ND     | 6.0  |           |
| 75-08-1   | Ethyl Mercaptan       | ND     | 15    | ND     | 6.0  |           |
| 75-18-3   | Dimethyl Sulfide      | ND     | 15    | ND     | 6.0  |           |
| 75-15-0   | Carbon Disulfide      | ND     | 9.3   | ND     | 3.0  |           |
| 75-33-2   | Isopropyl Mercaptan   | ND     | 19    | ND     | 6.0  |           |
| 75-66-1   | tert-Butyl Mercaptan  | ND     | 22    | ND     | 6.0  |           |
| 107-03-9  | n-Propyl Mercaptan    | ND     | 19    | ND     | 6.0  |           |
| 624-89-5  | Ethyl Methyl Sulfide  | ND     | 19    | ND     | 6.0  |           |
| 110-02-1  | Thiophene             | ND     | 20    | ND     | 6.0  |           |
| 513-44-0  | Isobutyl Mercaptan    | ND     | 22    | ND     | 6.0  |           |
| 352-93-2  | Diethyl Sulfide       | ND     | 22    | ND     | 6.0  |           |
| 109-79-5  | n-Butyl Mercaptan     | ND     | 22    | ND     | 6.0  |           |
| 624-92-0  | Dimethyl Disulfide    | ND     | 11    | ND     | 3.0  |           |
| 616-44-4  | 3-Methylthiophene     | ND     | 24    | ND     | 6.0  |           |
| 110-01-0  | Tetrahydrothiophene   | ND     | 21    | ND     | 6.0  |           |
| 638-02-8  | 2,5-Dimethylthiophene | ND     | 27    | ND     | 6.0  |           |
| 872-55-9  | 2-Ethylthiophene      | ND     | 27    | ND     | 6.0  | 1         |
| 110-81-6  | Diethyl Disulfide     | ND     | 15    | ND     | 3.0  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Date: 7/10/06
Page No.:

#### **RESULTS OF ANALYSIS** Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Method Blank

Client Project ID: WRS/WES0504

CAS Project ID: P2601798

CAS Sample ID: P060710-MB

Test Code:

ASTM D 5504-01

Instrument ID:

Analyst:

Zheng Wang

Sampling Media:

Silco Canister

Test Notes:

Agilent 6890A/GC13/SCD

Time Collected: NA Date Received: NA Date Analyzed: 7/10/06

Date Collected: NA

Time Analyzed: 09:49

Volume(s) Analyzed:

1.0 ml(s)

D.F.=1.00

|           |                       | Result | MRL   | Result | MRL  | Data      |
|-----------|-----------------------|--------|-------|--------|------|-----------|
| CAS#      | Compound              |        |       |        |      | Qualifier |
|           | -                     | μg/m³  | μg/m³ | ppbV   | ppbV |           |
| 7783-06-4 | Hydrogen Sulfide      | ND     | 7.0   | ND     | 5.0  |           |
| 463-58-1  | Carbonyl Sulfide      | ND     | 12    | ND     | 5.0  |           |
| 74-93-1   | Methyl Mercaptan      | ND     | 9.8   | ND     | 5.0  |           |
| 75-08-1   | Ethyl Mercaptan       | ND     | 13    | ND     | 5.0  |           |
| 75-18-3   | Dimethyl Sulfide      | ND     | 13    | · ND   | 5.0  |           |
| 75-15-0   | Carbon Disulfide      | ND     | 7.8   | ND     | 2.5  | -         |
| 75-33-2   | Isopropyl Mercaptan   | ND     | 16    | ND     | 5.0  |           |
| 75-66-1   | tert-Butyl Mercaptan  | ND     | 18    | ND     | 5.0  |           |
| 107-03-9  | n-Propyl Mercaptan    | ND     | 16    | ND     | 5.0  |           |
| 624-89-5  | Ethyl Methyl Sulfide  | ND     | 16    | ND     | 5.0  |           |
| 110-02-1  | Thiophene             | ND     | 17    | ND     | 5.0  |           |
| 513-44-0  | Isobutyl Mercaptan    | ND     | 18    | ND     | 5.0  |           |
| 352-93-2  | Diethyl Sulfide       | ND     | 18    | ND     | 5.0  |           |
| 109-79-5  | n-Butyl Mercaptan     | ND     | 18    | ND     | 5.0  |           |
| 624-92-0  | Dimethyl Disulfide    | ND     | 9.6   | ND     | 2.5  |           |
| 616-44-4  | 3-Methylthiophene     | ND     | 20    | ND     | 5.0  |           |
| 110-01-0  | Tetrahydrothiophene   | ND     | 18    | ND     | 5.0  |           |
| 638-02-8  | 2,5-Dimethylthiophene | ND     | 23    | ND     | 5.0  |           |
| 872-55-9  | 2-Ethylthiophene      | ND     | 23    | ND     | 5.0  |           |
| 110-81-6  | Diethyl Disulfide     | ND     | 12    | ND     | 2.5  | 1         |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

7/12/06 Page No.: Date:

#### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Client Project ID:

Lab Control Sample WRS/WES0504

CAS Project ID: P2601798

CAS Sample ID: P060710-LCS

# **Laboratory Control Sample Summary**

Test Code:

ASTM D 5504-01

Instrument ID:

Agilent 6890A/GC13/SCD

Analyst:

Zheng Wang

Sampling Media:

Silco Canister

Date Sampled: NA

Date Received: NA Date Analyzed: 7/10/06

Volume(s) Analyzed: NA

Test Notes:

| Compound         | Spike Amount<br>LCS<br>ppbV | Result<br>LCS<br>ppbV | % Recovery<br>LCS | CAS Acceptance Limits | Data<br>Qualifier |
|------------------|-----------------------------|-----------------------|-------------------|-----------------------|-------------------|
| Hydrogen Sulfide | 1,980                       | 2,030                 | 103               | 70-129                |                   |
| Carbonyl Sulfide | 2,130                       | 2,210                 | 104               | 80-138                |                   |
| Methyl Mercaptan | 2,080                       | 2,260                 | 109               | 78-128                |                   |

# Columbia Analytical Services, Inc. Sample Acceptance Check Form

| Clica    | nt: Weston Soluti   | ong of M    | lighigan Ing          | Sample A        | cceptance Check                                       | Work order:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P2601798            |             |             |             |
|----------|---------------------|-------------|-----------------------|-----------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|-------------|-------------|
|          |                     |             | icnigan, inc.         |                 |                                                       | work order:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P2001/98            |             |             |             |
| Projec   | et: WRS/WES05       |             | 07/10/06              |                 | D-4 1                                                 | 07/10/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C 1                 | 147         |             |             |
| ar . m   | Sample(s) rece      | -           | 07/10/06              | 64: 6           | Date opened:                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                   | MZ          |             |             |
|          |                     | _           |                       |                 | n for custody seals is structured either at the reque |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             | i indicatio | on of       |
| compilan | ce of honcomormity. | Thermai pre | servation and pri wi  | ii only be eval | uated either at the reque                             | st of the chefit of as lec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | function by the mem | Yes         | No          | N/A         |
| 1        | Were custody s      | eals on o   | atside of cooler/     | Box?            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             | X           |             |
|          | Location of so      |             | district of cooler.   | DOX.            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sealing Lid?        |             |             | ×           |
|          | Were signatur       | _           | e included?           |                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Scaring Dia:      |             |             | ×           |
|          | Were seals in       |             | e mended:             |                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |             | X           |
|          |                     |             | tside of sample       | container?      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             | ×           |             |
|          | Location of se      |             | uside of sumpre       | container.      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sealing Lid?        |             |             | ×           |
|          | Were signatur       |             | e included?           |                 |                                                       | 2.1000 (S. 1000 (S. 1 | _ staning that      |             |             | ×           |
|          | Were seals in       |             |                       |                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |             | X           |
| 2        |                     |             | properly marke        | d with clien    | t sample ID?                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ×           |             |             |
| 3        | _                   |             | rrive in good co      |                 | •                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $\times$    |             |             |
| 4        | -                   |             | papers used and       |                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | X           |             |             |
| 5        | Did sample con      | ntainer la  | bels and/or tags      | agree with      | custody papers?                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | X           |             |             |
| 6        | Was sample vo       | lume rece   | eived adequate fo     | or analysis?    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $\times$    |             |             |
| 7        | Are samples wi      | thin speci  | fied holding tim      | es?             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | X           |             |             |
| 8        | Was proper ten      | nperature   | (thermal preser       | vation) of c    | ooler at receipt adh                                  | ered to?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |             |             | X           |
|          |                     |             | Cooler Tempe          | rature          | NA                                                    | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |             |             |
|          |                     |             | Blank Tempe           | rature          | NA                                                    | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |             |             |
| 9        | Is pH (acid) pr     | eservatio   | n necessary, acco     | ording to me    | ethod/SOP or Clien                                    | t specified informa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion?               |             |             | X           |
|          |                     |             |                       | _               | s are pH (acid) pro                                   | eserved?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |             |             | X           |
|          | -                   |             | d for presence/a      |                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |             | X           |
|          |                     |             | _                     | -               | check the sample p                                    | H and if necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | z alter it?         |             |             | X           |
| 10       | Tubes:              |             | e tubes capped a      |                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |             | X           |
|          | D 1                 |             | y contain moistu      |                 | 1:                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |             | X           |
| 11       | Badges:             |             | e badges proper       |                 |                                                       | 1 1 : 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |             |             | $\boxtimes$ |
|          |                     | Are du      | ai bed badges se      | parated and     | individually cappe                                    | d and intact?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |             |             |             |
|          | Lab Sample ID       |             | Required pl           | ~~~~~~~~~       | pН                                                    | VOA Headspace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rece                | eipt / Pres |             |             |
|          |                     |             | (as received, if requ | tired) (as      | received, if required)                                | (Presence/Absence)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | Commer      | its         |             |
| P26017   | 798-001             |             |                       |                 |                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |             |             |
|          |                     |             |                       | _               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |             |             |
|          |                     |             |                       |                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |             |             |
|          |                     |             |                       |                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |             |             |
|          |                     |             |                       |                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |             |             |
|          |                     |             | 0                     |                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |             |             |
|          |                     |             |                       |                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |             |             |
|          |                     |             |                       |                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |             |             |
| Expla    | in any discrepanci  | es: (includ | le lab sample ID      | numbers):       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |             |             |

# Columbia Analytical Services

# Air Quality Laboratory Chain of Custody Record & Analytical Service Request 2665 Park Center Drive, Suite D

| Analytical                                                                                    | Simi Valley,      | Califomia 93      | 3065              | Requested 1                | Turnaround Ti              | me by Close of B                | usiness Day (S   | urcharges) Pie | ase Circle:   |                                         | CAS Project N | VO.                                                 |
|-----------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|----------------------------|----------------------------|---------------------------------|------------------|----------------|---------------|-----------------------------------------|---------------|-----------------------------------------------------|
| Analytical<br>Services **                                                                     | Phone (805)       | 526-7161          |                   | 1 Day (100%                | ) 2 Day (75%)              | 3 Day (50%) 4 D                 | ay (35%) 5 Day   | y (15%) 10 Day | -Standard     |                                         | 9260          | 1748                                                |
| An Employee - Channel Champion,                                                               | Fax (805) 52      |                   | <u></u>           |                            |                            |                                 |                  | CAS Contact:   |               |                                         |               |                                                     |
| leporting Information (Company                                                                | y Name & Ado      | tress)            |                   | P.O. # / Billin            | g Information              | 6                               |                  |                |               |                                         |               | ,                                                   |
| GRT, Inc                                                                                      |                   |                   |                   |                            | os MI                      | -                               |                  | Analys         | is Method     | and/or An                               | alytes        |                                                     |
| 1102 Cass Street<br>Traverse City M                                                           | n ual-            | Qu                |                   |                            |                            | a. a                            |                  |                |               |                                         |               |                                                     |
| tention:                                                                                      | L 776             | o j               |                   | Kat                        |                            | onew                            | ·                | ا ر            |               |                                         |               |                                                     |
| ttention: Nancy Pos                                                                           | avetty            |                   |                   | Project Name               | " WR                       | S .                             |                  | Suffer         |               |                                         |               | 0                                                   |
| 231-941-8622                                                                                  |                   | 51-941-           | 4131              | Project Numb               | we:                        | 50504                           |                  | i d            |               | •                                       | ·             | Comments e.g. Preservative or specific instructions |
| imail Address for Result Report                                                               | ting<br>tusa,     | com               |                   | Sampler (Prin              | •                          | alust                           | 0                | Reduce         |               | •                                       |               | ·                                                   |
| Client Sample ID                                                                              | Date<br>Collected | Time<br>Collected | Lab<br>Sample No. | Sample Type<br>(Air/Liquid | Canister ID<br>(Bar Code#) | Flow Controller<br>(Bar Code #) | Sample<br>Volume | 1 Pg 0         |               |                                         |               | ·                                                   |
| 10329 ELR                                                                                     | 7/7/06            | 2050              | (1)               | Silco                      | 003159                     |                                 | Grab             | X              |               | - · · · · · · · · · · · · · · · · · · · |               |                                                     |
|                                                                                               |                   |                   |                   |                            |                            |                                 |                  |                |               |                                         |               |                                                     |
|                                                                                               |                   |                   |                   |                            |                            |                                 |                  |                |               |                                         |               |                                                     |
|                                                                                               |                   |                   |                   |                            |                            |                                 |                  |                |               |                                         |               |                                                     |
|                                                                                               |                   |                   |                   |                            |                            |                                 |                  |                |               |                                         |               |                                                     |
|                                                                                               |                   |                   |                   |                            |                            |                                 |                  |                |               |                                         |               |                                                     |
|                                                                                               |                   |                   |                   |                            |                            |                                 |                  |                |               |                                         |               |                                                     |
|                                                                                               |                   |                   |                   | ·                          |                            |                                 |                  |                |               |                                         |               |                                                     |
|                                                                                               |                   |                   |                   |                            |                            |                                 |                  |                |               |                                         |               | ,                                                   |
|                                                                                               |                   |                   |                   |                            |                            |                                 |                  |                |               |                                         |               |                                                     |
| · · · · · · · · · · · · · · · · · · ·                                                         |                   |                   |                   |                            |                            |                                 |                  |                | ,             |                                         |               |                                                     |
| <del></del>                                                                                   |                   |                   |                   | 4 %                        |                            |                                 |                  |                |               |                                         |               |                                                     |
|                                                                                               |                   |                   |                   |                            |                            |                                 |                  |                |               |                                         |               |                                                     |
|                                                                                               |                   |                   |                   | 1.                         | , ide or                   |                                 |                  |                |               |                                         |               |                                                     |
|                                                                                               |                   |                   |                   |                            |                            |                                 |                  |                | <u> </u>      | ,                                       |               |                                                     |
| Report Tier Levels - please sele<br>Tier I - (default if not specified)<br>Tier II (QC forms) |                   | Tier III (QC      | , Raw Data, S     | Spectra) 10%               | Surcharge                  | , p. 2.                         | EDD required     | Yes / No       | ·             | 1                                       | Project Requ  | irements (MRLs, QAPP)                               |
| Relinquished by (Signature)                                                                   |                   |                   | Date:<br>7/7/06   | Time:                      | Received by: (S            |                                 |                  |                | Date:         | Time:                                   |               |                                                     |
| Relinquished by: (Signature)                                                                  | Pano              |                   | Date: 7/8/57      | Time: /0/0                 | Received by: (S            | Signature)                      | <b>.</b>         |                | Date: 7/10/06 | Time:                                   |               |                                                     |
| delinquished by: (Signature)                                                                  |                   |                   | Date:             | Time:                      | Received by: (S            |                                 |                  |                | Date:         | Time:                                   | Cooler / Blar |                                                     |
| _1                                                                                            |                   |                   | I                 |                            | 1                          |                                 |                  |                |               | 1                                       | Temperature   | °0969i                                              |

# LaMarre, Theodore

4-1

From:

Korobka, Linda

Sent:

Thursday, April 20, 2006 11:28 AM

To:

LaMarre, Theodore

Subject:

FW: Validation for Williamsburg Receiving and Storage Site Air Analytical Data

Attached is the validation report for Columbia Analytical Services Project ID P2600986

Linda Korobka

From:

Korobka, Linda

Sent:

Wednesday, April 19, 2006 12:59 PM

To:

LaMarre, Theodore

Subject:

Validation for Williamsburg Receiving and Storage Site Air Analytical Data

Ted.

I have reviewed and validated the Williamsburg Receiving and Storage Site Air Analytical Data. The following summarizes my findings.

Columbia Analytical Services, Inc., Simi Valley California Project ID P2600986

One investigative air sample was collected next to the wastewater lagoon on site by GRT on 4/17/06. The sample was analyzed for Volatile Organic Compounds (VOCs) by U.S. EPA Method TO-15, Reduced Sulfur Compounds by ASTM D 5504-01, Carboxylic Acids by Columbia Analytical Services SOP # AQL 102, and Amines by Columbia Analytical Services SOP # AQL 101.

A field blank was prepared by opening a silica gel tube (for the carboxylic acids) and a treated alumina tube (for the amines) and exposing the open tubes to ambient air on site during field activities on 4/17/06.

All samples were received in good condition by the laboratory and analyzed within the required holding times.

The Amine field blank sample and carboxylic acid field blank sample were free of contamination. The VOC method blank, Reduced Sulfur Compounds method blank, Carboxylic Acids method blank and Amines method blank were free of contamination.

All VOC surrogate spike recoveries were within the laboratory generated quality control limits.

All laboratory control sample recoveries were within the laboratory generated quality control limits for the VOC analyses, Reduced Sulfur Compounds analyses, Carboxylic Acid analyses and Amines analyses.

The data is acceptable for use with no data qualifiers.

Linda Korobka Weston Solutions of Michigan, Inc. Telephone: (517) 381-5936

Fax: (517) 381-5921

Linda, Korobka@westonsolutions.com



April 20, 2006

RECEIVED

Mr. Ted LaMarre Weston Solutions of Michigan, Inc. 2501 Jolly Road, Suite 100 Okemos, MI 48864 MAY 0 2 2006

Weston Solutions, Inc. of Michigan

RE: P2600986 WRS

Dear Mr. LaMarre:

Enclosed are the results of the sample(s) submitted to our laboratory on April 18, 2006. For your reference, these analyses have been assigned our service request number P2600986.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report. Your report contains \_\_\_\_\_\_ pages.

Columbia Analytical Services is certified by the California Department of Health Services, Certificate No. 2380; Arizona Department of Health Services, Certificate No. AZ0550; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661. Please contact me for specific method(s) and analyte(s) corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Kate Aguilera Project Manager

Page 1 of <u>*W*</u>





#### LABORATORY REPORT

Client:

WESTON SOLUTIONS OF MICHIGAN, INC.

Date of Report:

04/20/06

Address:

2501 Jolly Road, Suite 100

Date Received:

04/18/06

Okemos, MI 48864

CAS Project No:

P2600986

Contact:

Mr. Ted LaMarre

Purchase Order:

Verbal

Client Project ID: WRS

One (1) Stainless Steel Silco Canister labeled:

"L-1"

Two (2) Silica Gel Tubes labeled:

"L-1"

"Field Blank"

Two (2) Treated Amine Tube Samples labeled:

"L-1"

"Field Blank"

The samples were received at the laboratory under chain of custody on April 18, 2006. The client requested and received one day rush results. The samples were received intact. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time that they were received at the laboratory.

#### Sulfur Analysis

The Silco canister sample was analyzed for twenty sulfur compounds per ASTM D 5504-01 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan.

#### **Amines Analysis**

The Treated alumina tube samples were analyzed for amines utilizing a gas chromatograph (GC) equipped with a nitrogen phosphorus detector (NPD).

Reviewed and Approved:

Reviewed and Approved:

Chris Parnell

GCMS-VOA Team Leader

Air Quality Laboratory

John Yokoyama

Operations Manager

Air Quality Laboratory



CAS Project No:

P2600986

#### Carboxylic Acid Analysis

The Silica gel tube samples were analyzed for carboxylic acids using combined gas chromatography/mass spectrometry (GC/MS). The analyses were performed using a Hewlett Packard Model 5890 Series II gas chromatograph/Model 5970 mass selective detector.

#### Volatile Organic Compound Analysis

The Silco canister sample was also analyzed by combined gas chromatography/mass spectrometry (GC/MS) for selected volatile organic compounds. The analyses were performed according to the methodology outlined in EPA Method TO-15. The analyses were performed by gas chromatography/mass spectrometry, utilizing a direct cryogenic trapping technique. The analytical system used was comprised of a Hewlett Packard Model 5973 GC/MS/DS interfaced to a Tekmar AutoCan Elite whole air inlet system/cryogenic concentrator. A 100% Dimethylpolysiloxane capillary column (RT<sub>x</sub>-1, Restek Corporation, Bellefonte, PA) was used to achieve chromatographic separation.

The results of analyses are given on the attached data sheets. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

#### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: L-1

Client Project ID: WRS

CAS Project ID: P2600986

CAS Sample ID: P2600986-001C

Test Code:

ASTM D 5504-01

Instrument ID:

Agilent 6890A/GC13/SCD

Analyst:

Zheng Wang

Sampling Media:

Silco Canister

Test Notes:

Container ID:

SL00092

Date Collected: 4/17/06

Time Collected: 13:39

Date Received: 4/18/06

Date Analyzed: 4/18/06

Time Analyzed: 13:18

Volume(s) Analyzed:

1.0 ml(s)

Pi 1 =

-1.2

Pf 1 = 5.1

D.F.= 1.47

|           |                       | Result | MRL   | Result | MRL   | Data      |
|-----------|-----------------------|--------|-------|--------|-------|-----------|
| CAS#      | Compound              |        |       |        |       | Qualifier |
|           | <u> </u>              | μg/m³  | μg/m³ | ppbV   | ppbV  |           |
| 7783-06-4 | Hydrogen Sulfide      | ND     | 10    | ND     | 7.3   |           |
| 463-58-1  | Carbonyl Sulfide      | ND     | 18    | ND     | 7.3   |           |
| 74-93-1   | Methyl Mercaptan      | ND     | 14    | ND     | 7.3   |           |
| 75-08-1   | Ethyl Mercaptan       | ND     | 19    | ND     | 7.3   | 1         |
| 75-18-3   | Dimethyl Sulfide      | ND     | 19    | ND     | 7.3   |           |
| 75-15-0   | Carbon Disulfide      | ND     | 11    | ND     | 3.7   |           |
| 75-33-2   | Isopropyl Mercaptan   | ND     | 23    | ND     | . 7.3 |           |
| 75-66-1   | tert-Butyl Mercaptan  | ND     | 27    | ND     | 7.3   |           |
| 107-03-9  | n-Propyl Mercaptan    | ND     | 23    | ND     | 7.3   |           |
| 624-89-5  | Ethyl Methyl Sulfide  | ND     | 23    | ND     | 7.3   |           |
| 110-02-1  | Thiophene             | ND     | 25    | ND     | 7.3   |           |
| 513-44-0  | Isobutyl Mercaptan    | ND     | 27    | ND ND  | 7.3   |           |
| 352-93-2  | Diethyl Sulfide       | ND     | 27    | ND     | 7.3   |           |
| 109-79-5  | n-Butyl Mercaptan     | ND     | 27    | ND     | 7.3   | 1         |
| 624-92-0  | Dimethyl Disulfide    | . ND   | 14    | ND     | 3.7   | ]         |
| 616-44-4  | 3-Methylthiophene     | ND     | 29    | ND     | 7.3   |           |
| 110-01-0  | Tetrahydrothiophene   | ND     | 26    | ND     | 7.3   |           |
| 638-02-8  | 2,5-Dimethylthiophene | ND     | 34    | ND     | 7.3   |           |
| 872-55-9  | 2-Ethylthiophene      | ŅD     | 34    | ND     | 7.3   |           |
| 110-81-6  | Diethyl Disulfide     | ND     | 18    | ND     | 3.7   |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

#### **RESULTS OF ANALYSIS** Page 1 of 1

**Client:** 

Weston Solutions of Michigan, Inc.

Client Sample ID: Method Blank

Client Project ID: WRS

CAS Project ID: P2600986

CAS Sample ID: P060418-MB

Test Code:

ASTM D 5504-01

Instrument ID:

Agilent 6890A/GC13/SCD

Analyst:

Zheng Wang

Sampling Media: Test Notes:

Silco Canister

Date Received: NA Date Analyzed: 4/18/06 Time Analyzed: 09:19

Date Collected: NA Time Collected: NA

Volume(s) Analyzed:

1.0 ml(s)

D.F.=1.00

|           |                       | Result | MRL   | Result | MRL  | Data      |
|-----------|-----------------------|--------|-------|--------|------|-----------|
| CAS#      | Compound              |        |       |        |      | Qualifier |
|           |                       | μg/m³  | μg/m³ | ppbV   | ppbV |           |
| 7783-06-4 | Hydrogen Sulfide      | ND     | 7.0   | ND     | 5.0  |           |
| 463-58-1  | Carbonyl Sulfide      | ND     | 12    | ND     | 5.0  |           |
| 74-93-1   | Methyl Mercaptan      | ND     | 9.8   | ND     | 5.0  |           |
| 75-08-1   | Ethyl Mercaptan       | ND     | 13    | ND     | 5.0  |           |
| 75-18-3   | Dimethyl Sulfide      | ND     | 13    | ND     | 5.0  |           |
| 75-15-0   | Carbon Disulfide      | ND     | 7.8   | ND     | 2.5  |           |
| 75-33-2   | Isopropyl Mercaptan   | ND     | 16    | ND     | 5.0  |           |
| 75-66-1   | tert-Butyl Mercaptan  | ND     | 18    | ND     | 5.0  | 1         |
| 107-03-9  | n-Propyl Mercaptan    | ND     | 16    | ND     | 5.0  |           |
| 624-89-5  | Ethyl Methyl Sulfide  | ND     | 16    | ND     | 5.0  |           |
| 110-02-1  | Thiophene             | ND     | 17    | ND     | 5.0  |           |
| 513-44-0  | Isobutyl Mercaptan    | ND     | 18    | ND     | 5.0  |           |
| 352-93-2  | Diethyl Sulfide       | ND     | 18    | ND     | 5.0  |           |
| 109-79-5  | n-Butyl Mercaptan     | ND     | 18    | ND     | 5.0  |           |
| 624-92-0  | Dimethyl Disulfide    | ND     | 9.6   | ND     | 2.5  |           |
| 616-44-4  | 3-Methylthiophene     | ND     | 20    | ND     | 5.0  |           |
| 110-01-0  | Tetrahydrothiophene   | ND     | 18    | ND     | 5.0  |           |
| 638-02-8  | 2,5-Dimethylthiophene | ND     | 23    | ND     | 5.0  |           |
| 872-55-9  | 2-Ethylthiophene      | ND     | 23    | ND     | 5.0  |           |
| 110-81-6  | Diethyl Disulfide     | ND     | 12    | ND     | 2.5  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Date: 4/19/06

# RESULTS OF ANALYSIS

Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID:

Lab Control Sample

Client Project ID:

WRS

CAS Project ID: P2600986

CAS Sample ID: P060418-LCS

# **Laboratory Control Sample Summary**

Test Code:

ASTM D 5504-01

Instrument ID:

Agilent 6890A/GC13/SCD

Analyst:

Zheng Wang

Sampling Media:

Silco Canister

Date Sampled: NA

Date Received: NA

Date Analyzed: 4/18/06

Volume(s) Analyzed: NA

Test Notes:

| Compound         | Spike Amount<br>LCS<br>ppbV | Result<br>LCS<br>ppbV | % Recovery<br>LCS | CAS<br>Acceptance<br>Limits |
|------------------|-----------------------------|-----------------------|-------------------|-----------------------------|
| Hydrogen Sulfide | 1,980                       | 1,920                 | 97                | 70-129                      |
| Carbonyl Sulfide | 2,130                       | 2,180                 | 102               | 80-138                      |
| Methyl Mercaptan | 2,080                       | 2,260                 | 109               | 78-128                      |

#### **RESULTS OF ANALYSIS** Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: L-1

Client Project ID: WRS

CAS Project ID: P2600986

CAS Sample ID: P2600986-001

Test Code:

GC/NPD

Instrument ID:

Agilent 6890N/GC14/NPD

Analyst:

Madeleine Dangazyan

Sampling Media:

Treated Alumina Tube

Test Notes:

BC, DE

Date Collected: 4/17/06

Date Received: 4/18/06

Date Analyzed: 4/18/06

Desorption Volume:

2.0 ml

Volume Sampled:

101.8 Liters

|            |                  | Result  | Result | MRL   | Result | MRL  | Data     |
|------------|------------------|---------|--------|-------|--------|------|----------|
| CAS#       | Compound         |         |        | •     |        |      | Qualfier |
|            |                  | μg/Tube | μg/m³  | μg/m³ | ppbV   | ppbV |          |
| 124-40-3   | Dimethylamine    | < 0.20  | ND     | 2.0   | ND     | 1.1  |          |
| 75-04-7    | Ethylamine       | < 0.22  | ND     | 2.2   | ND     | 1.2  |          |
| 75-50-3    | Trimethylamine   | < 0.19  | ND     | 1.9   | ND     | 0.77 |          |
| 75-31-0    | Isopropylamine   | < 0.20  | ND     | 2.0   | ND     | 0.82 |          |
| 75-64-9    | t-Butylamine     | < 0.21  | ND     | 2.0   | ND     | 0.68 |          |
| 107-10-8   | Propylamine      | < 0.20  | ND     | 1.9   | ND     | 0.80 |          |
| 109-89-7   | Diethylamine     | < 0.21  | ND     | 2.0   | ND     | 0.68 |          |
| 13952-84-6 | s-Butylamine     | < 0.20  | ND     | 2.0   | ND     | 0.67 |          |
| 78-81-9    | Isobutylamine    | < 0.19  | ND     | 1.9   | ND     | 0.63 |          |
| 109-73-9   | Butylamine       | < 0.20  | ND     | 1.9   | ND     | 0.64 |          |
| 108-18-9   | Diisopropylamine | < 0.21  | ND     | 2.1   | ND     | 0.50 |          |
| 121-44-8   | Triethylamine    | < 0.21  | ND     | 2.0   | ND     | 0.49 |          |
| 142-84-7   | Dipropylamine    | < 0.42  | ND     | 4.1   | ND     | 0.99 |          |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

NA = Not applicable

BC = Results reported are not blank corrected

DE = Results reported are corrected for desorption efficiency.

Verified By:

# RESULTS OF ANALYSIS Page 1 of 1

Client: Weston Solutions of Michigan, Inc.

Client Sample ID: Field Blank CAS Project ID: P2600986
Client Project ID: WRS CAS Sample ID: P2600986-002

Test Code:

GC/NPD

Instrument ID:

Agilent 6890N/GC14/NPD

Analyst:

Madeleine Dangazyan

Sampling Media:

Treated Alumina Tube

Test Notes:

BC, DE

Date Collected: 4/17/06

Date Received: 4/18/06

Date Analyzed: 4/18/06

Desorption Volume:

2.0 ml

Volume Sampled:

NA Liters

| CAS#       | Compound         | Result  | Result | MRL   | Result | MRL  | Data<br>Qualfier |
|------------|------------------|---------|--------|-------|--------|------|------------------|
|            |                  | μg/Tube | μg/m³  | μg/m³ | ppbV   | ppbV | Quanton          |
| 124-40-3   | Dimethylamine    | < 0.20  | NA     | NA    | NA     | NA   |                  |
| 75-04-7    | Ethylamine       | < 0.22  | NA     | NA    | NA     | NA   |                  |
| 75-50-3    | Trimethylamine   | < 0.19  | NA     | NA    | NA     | NA   |                  |
| 75-31-0    | Isopropylamine   | < 0.20  | NA     | NA    | NA     | NA   |                  |
| 75-64-9    | t-Butylamine     | < 0.21  | NA     | NA    | NA     | NA   |                  |
| 107-10-8   | Propylamine      | < 0.20  | NA     | NA    | NA     | NA   |                  |
| 109-89-7   | Diethylamine     | < 0.21  | NA     | NA    | NA     | NA   |                  |
| 13952-84-6 | s-Butylamine     | < 0.20  | NA     | NA    | NA     | NA   |                  |
| 78-81-9    | Isobutylamine    | < 0.19  | NA     | NA    | NA     | NA   |                  |
| 109-73-9   | Butylamine       | < 0.20  | NA     | NA    | NA     | NA   |                  |
| 108-18-9   | Diisopropylamine | < 0.21  | NA     | NA    | NA     | NA   |                  |
| 121-44-8   | Triethylamine    | < 0.21  | NA     | NA    | NA     | NA   |                  |
| 142-84-7   | Dipropylamine    | < 0.42  | NA     | NA    | NA     | NA   |                  |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By: Lc Date: 4 2006

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

NA = Not applicable

BC = Results reported are not blank corrected

DE = Results reported are corrected for desorption efficiency.

#### **RESULTS OF ANALYSIS** Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Method Blank

Client Project ID: WRS

CAS Project ID: P2600986

CAS Sample ID: P060418-MB

Test Code:

GC/NPD

Instrument ID:

Agilent 6890N/GC14/NPD

Analyst:

Madeleine Dangazyan

Sampling Media:

Treated Alumina Tube

Test Notes:

BC, DE

Date Collected: NA

Date Received: NA

Date Analyzed: 4/18/06

Desorption Volume:

2.0 ml

Volume Sampled:

NA Liters

|            |                  | Result  | Result | MRL   | Result | MRL  | Data     |
|------------|------------------|---------|--------|-------|--------|------|----------|
| CAS#       | Compound         |         |        |       |        |      | Qualfier |
|            |                  | μg/Tube | μg/m³  | μg/m³ | ppbV   | ppbV |          |
| 124-40-3   | Dimethylamine    | < 0.20  | NA     | NA    | NA     | NA   |          |
| 75-04-7    | Ethylamine       | < 0.22  | NA     | NA    | NA     | NA   |          |
| 75-50-3    | Trimethylamine   | < 0.19  | NA     | NA    | NA     | NA   |          |
| 75-31-0    | Isopropylamine   | < 0.20  | NA     | NA    | NA     | NA   |          |
| 75-64-9    | t-Butylamine     | < 0.21  | NA     | NA    | NA     | NA   |          |
| 107-10-8   | Propylamine      | < 0.20  | NA     | NA    | NA     | NA   |          |
| 109-89-7   | Diethylamine     | < 0.21  | NA     | NA    | NA     | NA   |          |
| 13952-84-6 | s-Butylamine     | < 0.20  | NA     | NA    | NA     | NA   |          |
| 78-81-9    | Isobutylamine    | < 0.19  | NA     | NA    | NA     | NA   |          |
| 109-73-9   | Butylamine       | < 0.20  | NA     | NA    | NA     | NA   |          |
| 108-18-9   | Diisopropylamine | < 0.21  | NA     | NA    | NA     | NA   |          |
| 121-44-8   | Triethylamine    | < 0.21  | NA     | NA    | NA     | NA   |          |
| 142-84-7   | Dipropylamine    | < 0.42  | NA     | NA    | NA     | NA   |          |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

NA = Not applicable

BC = Results reported are not blank corrected

DE = Results reported are corrected for desorption efficiency.

#### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

13.3

12.9

Client Sample ID: Lab Control Sample

Client Project ID: WRS

CAS Project ID: P2600986 CAS Sample ID: P060418-LCS

Date Collected: NA

Date Received: NA

Volume(s) Analyzed: NA

Date Analyzed: 4/18/06

50-150

50-150

# **Laboratory Control Sample Summary**

Test Code:

GC/NPD

Instrument ID:

Agilent 6890N/GC14/NPD

Analyst:

Madeleine Dangazyan

Sampling Media:

Triethylamine

Dipropylamine

Treated Alumina Tube

Test Notes:

| Compound         | Spike Amount<br>LCS<br>µg/ml | Result<br>LCS<br>μg/ml | % Recovery<br>LCS | CAS<br>Acceptance<br>Limits | Data<br>Qualifier |
|------------------|------------------------------|------------------------|-------------------|-----------------------------|-------------------|
| Dimethylamine    | 13.0                         | 10.1                   | 78                | 50-150                      |                   |
| Ethylamine       | 14.0                         | 10.9                   | 78                | 50-150                      |                   |
| Trimethylamine   | 14.9                         | 10.1                   | 68                | 50-150                      |                   |
| Isopropylamine   | 21.4                         | 18.7                   | 87                | 50-150                      |                   |
| t-Butylamine     | 10.8                         | 9.50                   | 88                | 50-150                      |                   |
| Propylamine      | 12.0                         | 10.6                   | 88                | 50-150                      | <u> </u>          |
| Diethylamine     | 10.7                         | 9.66                   | 90                | 50-150                      |                   |
| s-Butylamine     | 11.3                         | 10.6                   | 94                | 50-150                      |                   |
| Isobutylamine    | 12.3                         | 11.3                   | 92                | 50-150                      | 1                 |
| Butylamine       | 13.8                         | 12.9                   | 94                | 50-150                      |                   |
| Diisopropylamine | 13.9                         | 12.8                   | 92                | 50-150                      |                   |

11.7

12.0

88

93

### **RESULTS OF ANALYSIS** Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: L-1

Client Project ID: WRS

CAS Project ID: P2600986

CAS Sample ID: P2600986-001B

Test Code:

GC/MS

Instrument ID:

HP5970/HP5890II+/MS4

Analyst:

Madeleine Dangazyan

Sampling Media:

Silica Gel Tube

Test Notes:

BC, DE

Date Collected: 4/17/06 Date Received: 4/18/06

Date Analyzed: 4/18/06

Desorption Volume:

1.0 ml

Volume Sampled:

100.07 Liters

|          |                                     | Result  | Result | MRL   | Result | MRL  | Data     |
|----------|-------------------------------------|---------|--------|-------|--------|------|----------|
| CAS#     | Compound                            |         |        |       |        |      | Qualfier |
|          |                                     | μg/Tube | μg/m³  | μg/m³ | ppbV   | ppbV |          |
| 64-19-7  | Acetic Acid                         | 2.0     | 20     | . 11  | 8.1    | 4.3  |          |
| 79-09-4  | Propanoic Acid (Propionic)          | < 0.27  | ND     | 2.6   | ND     | 0.87 |          |
| 79-31-2  | 2-Methylpropanoic Acid (Isobutyric) | < 0.26  | ND     | 2.6   | ND     | 0.72 |          |
| 107-92-6 | Butanoic Acid (Butyric)             | 3.4     | 34     | 2.6   | 9.4    | 0.71 |          |
| 116-53-0 | 2-Methyl Butanoic Acid              | 0.55    | 5.5    | 2.5   | 1.3    | 0.60 |          |
| 503-74-2 | 3-Methyl Butanoic Acid (Isovaleric) | < 0.25  | ND     | 2.5   | ND     | 0.61 |          |
| 109-52-4 | Pentanoic Acid (Valeric)            | 1.3     | 13     | 2.5   | 3.0    | 0.60 |          |
| 97-61-0  | 2-Methylpentanoic Acid              | < 0.25  | ND     | 2.5   | ND     | 0.52 |          |
| 105-43-1 | 3-Methylpentanoic Acid              | < 0.25  | ND     | 2.5   | ND     | 0.52 |          |
| 646-07-1 | 4-Methylpentanoic Acid (Isocaproic) | < 0.25  | ND     | 2.5   | ND     | 0.52 |          |
| 142-62-1 | Hexanoic Acid (Caproic)             | 0.99    | 9.9    | 2.4   | 2.1    | 0.51 |          |
| 149-57-5 | 2-Ethylhexanoic Acid                | < 0.27  | ND     | 2.7   | ND     | 0.45 |          |
| 111-14-8 | Heptanoic Acid                      | 0.38    | 3.8    | 2.6   | 0.71   | 0.49 |          |
| 124-07-2 | Octanoic Acid (Caprylic)            | 0.39    | 3.9    | 2.5   | 0.66   | 0.42 | .:       |
| 98-89-5  | Cyclohexanecarboxylic Acid          | < 0.25  | ND     | 2.5   | ND     | 0.48 |          |
| 112-05-0 | Nonanoic Acid                       | < 0.26  | ND     | 2.6   | ND     | 0.40 |          |
| 65-85-0  | Benzoic Acid                        | < 0.30  | ND     | 3.0   | ND     | 0.61 |          |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

NA = Not applicable

BC = Results reported are not blank corrected

DE = Results reported are corrected for desorption efficiency.

#### RESULTS OF ANALYSIS Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Field Blank

Client Project ID: WRS

CAS Project ID: P2600986

CAS Sample ID: P2600986-002B

Test Code:

GC/MS

Instrument ID:

HP5970/HP5890II+/MS4

Analyst:

Madeleine Dangazyan

Sampling Media:

Silica Gel Tube

Test Notes:

BC, DE

Date Collected: 4/17/06

Date Received: 4/18/06 Date Analyzed: 4/18/06

Desorption Volume:

1.0 ml

Volume Sampled:

NA Liters

|          | 1                                   | Result  | Result | MRL   | Result | MRL  | Data     |
|----------|-------------------------------------|---------|--------|-------|--------|------|----------|
| CAS#     | Compound                            |         |        |       |        |      | Qualfier |
|          |                                     | μg/Tube | μg/m³  | μg/m³ | ppbV   | ppbV |          |
| 64-19-7  | Acetic Acid                         | < 1.1   | NA     | NA    | NA     | NA   |          |
| 79-09-4  | Propanoic Acid (Propionic)          | < 0.27  | NA     | NA    | NA     | NA   |          |
| 79-31-2  | 2-Methylpropanoic Acid (Isobutyric) | < 0.26  | NA     | NA    | NA     | NA   |          |
| 107-92-6 | Butanoic Acid (Butyric)             | < 0.26  | NA     | NA    | NA     | NA   |          |
| 116-53-0 | 2-Methyl Butanoic Acid              | < 0.25  | NA     | NA    | NA     | NA   |          |
| 503-74-2 | 3-Methyl Butanoic Acid (Isovaleric) | < 0.25  | NA     | NA    | NA     | NA   |          |
| 109-52-4 | Pentanoic Acid (Valeric)            | < 0.25  | NA     | NA    | NA     | NA   |          |
| 97-61-0  | 2-Methylpentanoic Acid              | < 0.25  | NA     | NA    | NA     | NA   |          |
| 105-43-1 | 3-Methylpentanoic Acid              | < 0.25  | NA     | NA    | NA     | NA   |          |
| 646-07-1 | 4-Methylpentanoic Acid (Isocaproic) | < 0.25  | NA     | NA    | NA     | NA   |          |
| 142-62-1 | Hexanoic Acid (Caproic)             | < 0.24  | NA     | NA    | NA     | NA   |          |
| 149-57-5 | 2-Ethylhexanoic Acid                | < 0.27  | NA     | NA    | NA     | NA   |          |
| 111-14-8 | Heptanoic Acid                      | < 0.26  | NA     | ŇA    | NA     | NA   |          |
| 124-07-2 | Octanoic Acid (Caprylic)            | < 0.25  | NA     | NA    | NA     | NA   |          |
| 98-89-5  | Cyclohexanecarboxylic Acid          | < 0.25  | NA     | NA    | NA     | NA   |          |
| 112-05-0 | Nonanoic Acid                       | < 0.26  | NA     | NA    | NA     | NA   |          |
| 65-85-0  | Benzoic Acid                        | < 0.30  | NA     | NA    | NA     | NA   |          |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

NA = Not applicable

BC = Results reported are not blank corrected

DE = Results reported are corrected for desorption efficiency.

Date: 4120106 الى Verified By:

#### **RESULTS OF ANALYSIS** Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Method Blank

Client Project ID:

WRS

CAS Project ID: P2600986

CAS Sample ID: P060418-MB

Test Code:

GC/MS

Instrument ID:

HP5970/HP5890II+/MS4

Analyst:

Madeleine Dangazyan

Silica Gel Tube

Sampling Media: Test Notes:

BC, DE

Date Collected: NA

Date Received: NA

Date Analyzed: 4/18/06 Desorption Volume:

1.0 ml

Volume Sampled:

NA Liters

|          |                                     | Result  | Result | MRL         | Result | MRL  | Data     |
|----------|-------------------------------------|---------|--------|-------------|--------|------|----------|
| CAS#     | Compound                            |         |        |             |        |      | Qualfier |
| _        |                                     | μg/Tube | μg/m³  | $\mu g/m^3$ | ppbV   | ppbV |          |
| 64-19-7  | Acetic Acid                         | < 1.1   | NA     | NA          | NA     | NA   |          |
| 79-09-4  | Propanoic Acid (Propionic)          | < 0.27  | NA     | NA          | NA     | NA   |          |
| 79-31-2  | 2-Methylpropanoic Acid (Isobutyric) | < 0.26  | NA     | NA          | NA     | NA   |          |
| 107-92-6 | Butanoic Acid (Butyric)             | < 0.26  | NA     | NA          | NA     | NA   |          |
| 116-53-0 | 2-Methyl Butanoic Acid              | < 0.25  | NA     | NA          | NA     | NA   |          |
| 503-74-2 | 3-Methyl Butanoic Acid (Isovaleric) | < 0.25  | NA     | NA          | NA     | NA   |          |
| 109-52-4 | Pentanoic Acid (Valeric)            | < 0.25  | NA     | NA          | NA     | NA   |          |
| 97-61-0  | 2-Methylpentanoic Acid              | < 0.25  | NA     | NA          | NA     | NA   |          |
| 105-43-1 | 3-Methylpentanoic Acid              | < 0.25  | NA     | NA          | NA     | NA   |          |
| 646-07-1 | 4-Methylpentanoic Acid (Isocaproic) | < 0.25  | NA     | NA          | NA     | NA   |          |
| 142-62-1 | Hexanoic Acid (Caproic)             | < 0.24  | NA     | NA          | NA     | NA   |          |
| 149-57-5 | 2-Ethylhexanoic Acid                | < 0.27  | NA     | NA          | NA     | NA   |          |
| 111-14-8 | Heptanoic Acid                      | < 0.26  | NA     | NA          | NA     | NA   |          |
| 124-07-2 | Octanoic Acid (Caprylic)            | < 0.25  | NA     | NA          | NA     | NA   |          |
| 98-89-5  | Cyclohexanecarboxylic Acid          | < 0.25  | NA     | NA          | NA     | NA   |          |
| 112-05-0 | Nonanoic Acid                       | < 0.26  | NA     | NA          | NA     | NA   |          |
| 65-85-0  | Benzoic Acid                        | < 0.30  | NA     | NA          | NA     | NA   |          |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

NA = Not applicable

BC = Results reported are not blank corrected

DE = Results reported are corrected for desorption efficiency.

Date: 4120106 Verified By:

# **RESULTS OF ANALYSIS** Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: WRS

CAS Project ID: P2600986

CAS Sample ID: P060418-LCS

### **Laboratory Control Sample Summary**

Test Code:

GC/MS

Instrument ID: Analyst:

HP5970/HP5890II+/MS4 Madeleine Dangazyan

Sampling Media:

Silica Gel Tube

Test Notes:

Date Collected: NA

Date Received: NA

Date Analyzed: 4/18/06

Volume(s) Analyzed: NA

| Compound                            | Spike Amount<br>LCS<br>µg/ml | Result<br>LCS<br>μg/ml | % Recovery<br>LCS | CAS Acceptance Limits | Data<br>Qualifier |
|-------------------------------------|------------------------------|------------------------|-------------------|-----------------------|-------------------|
| Acetic Acid                         | 27.0                         | 29.4                   | 109               | 70-130                |                   |
| Propanoic Acid (Propionic)          | 12.1                         | 12.6                   | 104               | 70-130                |                   |
| 2-Methylpropanoic Acid (Isobutyric) | 14.6                         | 15.1                   | 103               | 70-130                |                   |
| Butanoic Acid (Butyric)             | 14.0                         | 14.5                   | 104               | 70-130                |                   |
| 2-Methyl Butanoic Acid              | 15.2                         | 15.4                   | 101               | 70-130                |                   |
| 3-Methyl Butanoic Acid (Isovaleric) | 14.7                         | 14.8                   | 101               | 70-130                |                   |
| Pentanoic Acid (Valeric)            | 14.7                         | 14.8                   | 101               | 70-130                |                   |
| 2-Methylpentanoic Acid              | 15.4                         | 15.5                   | 100               | 70-130                |                   |
| 3-Methylpentanoic Acid              | 15.5                         | 15.2                   | 98                | 70-130                | -                 |
| 4-Methylpentanoic Acid (Isocaproic) | 15.3                         | 15.0                   | 98                | 70-130                |                   |
| Hexanoic Acid (Caproic)             | 15.8                         | 15.5                   | 98                | 70-130                |                   |
| 2-Ethylhexanoic Acid                | 15.4                         | 14.7                   | 95                | 70-130 .              |                   |
| Heptanoic Acid                      | 16.6                         | 16.0                   | 96                | 70-130                |                   |
| Octanoic Acid (Caprylic)            | 16.4                         | 16.0                   | 98                | 70-130                |                   |
| Cyclohexanecarboxylic Acid          | 15.4                         | 15.2                   | 99                | 70-130                |                   |
| Nonanoic Acid                       | 16.7                         | 15.6                   | 94                | 70-130                |                   |
| Benzoic Acid                        | 12.8                         | 12.5                   | 97                | 70-130                |                   |

Date: 4/20/66 Verified By:

#### **RESULTS OF ANALYSIS**

Page 1 of 3

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: L-1

Client Project ID: WRS

CAS Project ID: P2600986

CAS Sample ID: P2600986-001C

Test Code:

**EPA TO-15** 

Date Collected: 4/17/06

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Date Received: 4/18/06

Analyst:

Rusty Bravo

Date(s) Analyzed: 4/18/06

0.50 Liter(s)

Sampling Media: Test Notes:

Silco Canister

Volume(s) Analyzed: 0.050 Liter(s)

Container ID:

SL00092

Pi 1 = -1.2 Pf 1 = 5.1

Can D.F. = 1.47

| CAS#      | Compound                            | Result<br>μg/m³ | MRL<br>μg/m³ | Result<br>ppbV | MRL<br>ppbV | Data<br>Qualifier |
|-----------|-------------------------------------|-----------------|--------------|----------------|-------------|-------------------|
| 75-71-8   | Dichlorodifluoromethane (CFC 12)    | 3.1             | 2.9          | 0.62           | 0.59        | -                 |
| 74-87-3   | Chloromethane                       | ND              | 2.9          | ND             | 1.4         |                   |
|           | 1,2-Dichloro-1,1,2,2-               |                 |              |                |             |                   |
| 76-14-2   | tetrafluoroethane (CFC 114)         | ND              | 2.9          | ND             | 0.42        |                   |
| 75-01-4   | Vinyl Chloride                      | ND              | 2.9          | ND             | 1.2         |                   |
| 106-99-0  | 1,3-Butadiene                       | ND              | 2.9          | ND             | 1.3         |                   |
| 74-83-9   | Bromomethane                        | ND              | 2.9          | ND             | 0.76        |                   |
| 75-00-3   | Chloroethane                        | ND              | 2.9          | ND             | 1.1         | 1                 |
| 64-17-5   | Ethanol                             | 470             | 15           | 250            | 7.8         |                   |
| 75-05-8   | Acetonitrile                        | ND              | 2.9          | ND             | 1.8         |                   |
| 107-02-8  | Acrolein                            | ND              | 2.9          | ND             | . 1.3       |                   |
| 67-64-1   | Acetone                             | ND              | 15           | ND             | 6.2         |                   |
| 75-69-4   | Trichlorofluoromethane              | ND              | 2.9          | ND             | 0.52        |                   |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)      | ND              | 2.9          | ND             | 1.2         |                   |
| 107-13-1  | Acrylonitrile                       | ND              | 2.9          | ND             | 1.4         |                   |
| 75-35-4   | 1,1-Dichloroethene                  | ND              | 2.9          | ND             | 0.74        |                   |
| 75-09-2   | Methylene chloride                  | ND              | 2.9          | ND             | 0.85        | \$                |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride) | ND              | 2.9          | ND             | 0.94        |                   |
| 76-13-1   | Trichlorotrifluoroethane            | ND              | 2.9          | ND             | 0.38        |                   |
| 75-15-0   | Carbon Disulfide                    | ND              | 2.9          | ND             | 0.94        |                   |
| 156-60-5  | trans-1,2-Dichloroethene            | ND              | 2.9          | ND             | 0.74        |                   |
| 75-34-3   | 1,1-Dichloroethane                  | ND              | 2.9          | ND             | 0.73        |                   |
| 1634-04-4 | Methyl tert-Butyl Ether             | ND              | 2.9          | ND             | 0.82        |                   |
| 108-05-4  | Vinyl Acetate                       | ND              | 2.9          | ND             | 0.84        |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

\_\_\_\_\_Date: 4/19/06

# **RESULTS OF ANALYSIS** Page 2 of 3

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: L-1

Client Project ID: WRS

CAS Project ID: P2600986

CAS Sample ID: P2600986-001C

Test Code:

**EPA TO-15** 

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Analyst:

Rusty Bravo

Sampling Media: Test Notes:

Silco Canister

Date Received: 4/18/06 Date(s) Analyzed: 4/18/06

Date Collected: 4/17/06

Volume(s) Analyzed:

0.50 Liter(s)

0.050 Liter(s)

Container ID:

SL00092

Pi 1 = -1.2 Pf 1 = 5.1

Can D.F. = 1.47

| CAS#       | Compound                  | Result<br>µg/m³ | MRL<br>μg/m³ | Result<br>ppbV | MRL<br>ppbV | Data<br>Qualifier |
|------------|---------------------------|-----------------|--------------|----------------|-------------|-------------------|
| 78-93-3    | 2-Butanone (MEK)          | ND              | 2.9          | ND             | 1.0         |                   |
| 156-59-2   | cis-1,2-Dichloroethene    | ND              | 2.9          | ND             | 0.74        | - "               |
| 110-54-3   | n-Hexane                  | ND              | 2.9          | ND             | 0.83        |                   |
| 67-66-3    | Chloroform                | ND              | 2.9          | ND             | 0.60        |                   |
| 107-06-2   | 1,2-Dichloroethane        | ND              | 2.9          | ND             | 0.73        |                   |
| 71-55-6    | 1,1,1-Trichloroethane     | ND              | 2.9          | ND             | 0.54        |                   |
| 71-43-2    | Benzene                   | ND              | 2.9          | ND             | 0.92        |                   |
| 56-23-5    | Carbon Tetrachloride      | ND              | 2.9          | ND             | 0.47        |                   |
| 78-87-5    | 1,2-Dichloropropane       | ND              | 2.9          | ND             | 0.64        |                   |
| 75-27-4    | Bromodichloromethane      | ND              | 2.9          | ND             | 0.44        |                   |
| 79-01-6    | Trichloroethene           | ND              | 2.9          | ND             | 0.55        |                   |
| 123-91-1   | 1,4-Dioxane               | ND              | 2.9          | ND             | 0.82        |                   |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND              | 2.9          | ND             | 0.65        |                   |
| 108-10-1   | 4-Methyl-2-pentanone      | ND              | 2.9          | ND             | 0.72        |                   |
| 10061-02-6 | trans-1,3-Dichloropropene | · ND            | 2.9          | ND             | 0.65        |                   |
| 79-00-5    | 1,1,2-Trichloroethane     | ND              | 2.9          | ND             | 0.54        |                   |
| 108-88-3   | Toluene                   | 3.6             | 2.9          | 0.95           | 0.78        |                   |
| 591-78-6   | 2-Hexanone                | ND              | 2.9          | ND             | 0.72        |                   |
| 124-48-1   | Dibromochloromethane      | ND              | 2.9          | ND             | 0.35        |                   |
| 106-93-4   | 1,2-Dibromoethane         | ND              | 2.9          | ND             | 0.38        |                   |
| 123-86-4   | n-Butyl Acetate           | ND              | 2.9          | ND             | 0.62        |                   |
| 127-18-4   | Tetrachloroethene         | ND              | 2.9          | ND             | 0.43        |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: RG Date: 4/19/06

#### **RESULTS OF ANALYSIS** Page 3 of 3

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: L-1

Client Project ID: WRS

CAS Project ID: P2600986

CAS Sample ID: P2600986-001C

Test Code:

EPA TO-15

Date Collected: 4/17/06

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Date Received: 4/18/06

Analyst: Sampling Media: Rusty Bravo

Date(s) Analyzed: 4/18/06

0.50 Liter(s)

Silco Canister

Volume(s) Analyzed:

0.050 Liter(s)

Test Notes: Container ID:

SL00092

Pi 1 = -1.2 Pf 1 = 5.1

Can D.F. = 1.47

| CAS#        | Compound                    | Result<br>µg/m³ | MRL<br>μg/m³ | Result<br>ppbV | MRL<br>ppbV | Data<br>Qualifier |
|-------------|-----------------------------|-----------------|--------------|----------------|-------------|-------------------|
| 108-90-7    | Chlorobenzene               | ND              | 2.9          | ND             | 0.64        |                   |
| 100-41-4    | Ethylbenzene                | ND              | 2.9          | ND             | 0.68        |                   |
| 179601-23-1 | m,p-Xylenes                 | ND              | 2.9          | ND             | 0.68        | -                 |
| 75-25-2     | Bromoform                   | ND              | 2.9          | ND             | 0.28        |                   |
| 100-42-5    | Styrene                     | ND              | 2.9          | ND             | 0.69        | -                 |
| 95-47-6     | o-Xylene                    | ND              | 2.9          | ND             | 0.68        |                   |
| 111-84-2    | n-Nonane                    | ND              | 2.9          | ND             | 0.56        |                   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND              | 2.9          | ND             | 0.43        |                   |
| 98-82-8     | Cumene                      | ND              | 2.9          | ND             | 0.60        |                   |
| 80-56-8     | alpha-Pinene                | ND              | 2.9          | ND             | 0.53        |                   |
| 622-96-8    | 4-Ethyltoluene              | ND              | 2.9          | ND             | 0.60        |                   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND              | 2.9          | ND             | 0.60        |                   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND              | 2.9          | ND             | 0.60        |                   |
| 100-44-7    | Benzyl Chloride             | · ND            | 2.9          | ND             | 0.57        |                   |
| 541-73-1    | 1,3-Dichlorobenzene         | ND              | 2.9          | ND             | 0.49        |                   |
| 106-46-7    | 1,4-Dichlorobenzene         | ND              | 2.9          | ND             | 0.49        |                   |
| 95-50-1     | 1,2-Dichlorobenzene         | ND              | 2.9          | ND             | 0.49        |                   |
| 5989-27-5   | d-Limonene                  | ND              | 2.9          | ND             | 0.53        |                   |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND              | 2.9          | ND             | 0.30        |                   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND              | 2.9          | ND             | 0.40        |                   |
| 91-20-3     | Naphthalene                 | ND              | 2.9          | ND             | 0.56        |                   |
| 87-68-3     | Hexachlorobutadiene         | ND              | 2.9          | ND             | 0.28        |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### **RESULTS OF ANALYSIS**

Page 1 of 3

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Method Blank

Client Project ID: WRS

CAS Project ID: P2600986

Date Collected: NA

Date Received: NA

CAS Sample ID: P060418-MB

Test Code:

**EPA TO-15** 

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Analyst:

Rusty Bravo

Sampling Media:

Silco Canister

Date(s) Analyzed: 4/18/06 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

D.F. = 1.00

| CAS#      | Compound                            | Result | MRL   | Result | MRL  | Data      |
|-----------|-------------------------------------|--------|-------|--------|------|-----------|
|           |                                     | μg/m³  | μg/m³ | ppbV   | ppbV | Qualifier |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)    | ND     | 1.0   | ND     | 0.20 |           |
| 74-87-3   | Chloromethane                       | ND     | 1.0   | ND     | 0.48 |           |
|           | 1,2-Dichloro-1,1,2,2-               |        |       |        |      |           |
| 76-14-2   | tetrafluoroethane (CFC 114)         | ND     | 1.0   | ND     | 0.14 |           |
| 75-01-4   | Vinyl Chloride                      | ND     | 1.0   | ND     | 0.39 |           |
| 106-99-0  | 1,3-Butadiene                       | ND     | 1.0   | ND     | 0.45 |           |
| 74-83-9   | Bromomethane                        | ND     | 1.0   | ND     | 0.26 |           |
| 75-00-3   | Chloroethane                        | ND     | 1.0   | ND     | 0.38 |           |
| 64-17-5   | Ethanol                             | ND     | 5.0   | ND     | 2.7  | _         |
| 75-05-8   | Acetonitrile                        | ND     | 1.0   | ND     | 0.60 |           |
| 107-02-8  | Acrolein                            | ND     | 1.0   | ND     | 0.44 |           |
| 67-64-1   | Acetone                             | ND     | 5.0   | ND     | 2.1  |           |
| 75-69-4   | Trichlorofluoromethane              | ND     | 1.0   | ND     | 0.18 |           |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)      | ND     | 1.0   | ND     | 0.41 |           |
| 107-13-1  | Acrylonitrile                       | ND     | 1.0   | ND     | 0.46 |           |
| 75-35-4   | 1,1-Dichloroethene                  | ND     | 1.0   | ND     | 0.25 |           |
| 75-09-2   | Methylene chloride                  | ND     | 1.0   | ND     | 0.29 |           |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride) | ND     | 1.0   | ND     | 0.32 |           |
| 76-13-1   | Trichlorotrifluoroethane            | ND     | 1.0   | ND     | 0.13 |           |
| 75-15-0   | Carbon Disulfide                    | ND     | 1.0   | ND     | 0.32 |           |
| 156-60-5  | trans-1,2-Dichloroethene            | ND     | 1.0   | ND     | 0.25 |           |
| 75-34-3   | 1,1-Dichloroethane                  | ND     | 1.0   | ND     | 0.25 |           |
| 1634-04-4 | Methyl tert-Butyl Ether             | ND     | 1.0   | ND     | 0.28 |           |
| 108-05-4  | Vinyl Acetate                       | ND     | 1.0   | ND     | 0.28 |           |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### **RESULTS OF ANALYSIS** Page 2 of 3

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Method Blank

Client Project ID: WRS

CAS Project ID: P2600986 CAS Sample ID: P060418-MB

Test Code:

**EPA TO-15** 

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Analyst:

Rusty Bravo

Sampling Media:

Silco Canister

Test Notes:

Date Collected: NA Date Received: NA Date(s) Analyzed: 4/18/06

Volume(s) Analyzed:

1.00 Liter(s)

D.F. = 1.00

| CAS#       | Compound                  | Result<br>μg/m³ | MRL<br>μg/m³ | Result<br>ppbV | MRL<br>ppbV | Data<br>Qualifier |
|------------|---------------------------|-----------------|--------------|----------------|-------------|-------------------|
| 78-93-3    | 2-Butanone (MEK)          | ND              | 1.0          | ND             | 0.34        |                   |
| 156-59-2   | cis-1,2-Dichloroethene    | ND              | 1.0          | ND             | 0.25        |                   |
| 110-54-3   | n-Hexane                  | ND              | 1.0          | ND             | 0.28        |                   |
| 67-66-3    | Chloroform                | ND              | 1.0          | ND             | 0.20        |                   |
| 107-06-2   | 1,2-Dichloroethane        | ND              | 1.0          | ND             | 0.25        |                   |
| 71-55-6    | 1,1,1-Trichloroethane     | ND              | 1.0          | ND             | 0.18        |                   |
| 71-43-2    | Benzene                   | ND              | 1.0          | ND             | 0.31        |                   |
| 56-23-5    | Carbon Tetrachloride      | ND              | 1.0          | ND             | 0.16        |                   |
| 78-87-5    | 1,2-Dichloropropane       | ND              | 1.0          | ND             | 0.22        |                   |
| 75-27-4    | Bromodichloromethane      | ND              | 1.0          | ND             | 0.15        |                   |
| 79-01-6    | Trichloroethene           | ND              | 1.0          | ND             | 0.19        |                   |
| 123-91-1   | 1,4-Dioxane               | ND              | 1.0          | ND             | 0.28        |                   |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND              | 1.0          | ND             | 0.22        |                   |
| 108-10-1   | 4-Methyl-2-pentanone      | ND              | 1.0          | ND             | 0.24        |                   |
| 10061-02-6 | trans-1,3-Dichloropropene | ND              | 1.0          | ND             | 0.22        |                   |
| 79-00-5    | 1,1,2-Trichloroethane     | ND              | 1.0          | ND             | 0.18        |                   |
| 108-88-3   | Toluene                   | ND              | 1.0          | ND             | 0.27        |                   |
| 591-78-6   | 2-Hexanone                | ND              | 1.0          | ND             | 0.24        |                   |
| 124-48-1   | Dibromochloromethane      | ND              | 1.0          | ND             | 0.12        |                   |
| 106-93-4   | 1,2-Dibromoethane         | ND              | 1.0          | ND             | 0.13        |                   |
| 123-86-4   | n-Butyl Acetate           | ND              | 1.0          | ND             | 0.21        |                   |
| 127-18-4   | Tetrachloroethene         | ND              | 1.0          | ND             | 0.15        |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### **RESULTS OF ANALYSIS** Page 3 of 3

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Method Blank

Client Project ID: WRS

CAS Project ID: P2600986 CAS Sample ID: P060418-MB

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Analyst:

**Rusty Bravo** 

Sampling Media:

Silco Canister

Test Notes:

Date Collected: NA Date Received: NA Date(s) Analyzed: 4/18/06

Volume(s) Analyzed:

1.00 Liter(s)

D.F. = 1.00

| CAS#        | Compound                    | Result<br>µg/m³ | MRL<br>μg/m³ | Result<br>ppbV | MRL<br>ppbV | Data<br>Qualifier |
|-------------|-----------------------------|-----------------|--------------|----------------|-------------|-------------------|
| 108-90-7    | Chlorobenzene               | ND              | 1.0          | · ND           | 0.22        |                   |
| 100-41-4    | Ethylbenzene                | ND              | 1.0          | ND             | 0.23        | *                 |
| 179601-23-1 | m,p-Xylenes                 | ND              | 1.0          | ND             | 0.23        |                   |
| 75-25-2     | Bromoform                   | ND              | 1.0          | ND             | 0.097       |                   |
| 100-42-5    | Styrene                     | ND              | 1.0          | ND             | 0.23        |                   |
| 95-47-6     | o-Xylene                    | ND              | 1.0          | ND             | 0.23        |                   |
| 111-84-2    | n-Nonane                    | ND              | 1.0          | ND             | 0.19        |                   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND              | 1.0          | ND             | 0.15        |                   |
| 98-82-8     | Cumene                      | ND              | 1.0          | ND             | 0.20        |                   |
| 80-56-8     | alpha-Pinene                | ND              | 1.0          | ND             | 0.18        |                   |
| 622-96-8    | 4-Ethyltoluene              | ND              | 1.0          | ND             | 0.20        | -                 |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND              | <b>1.0</b> ) | ND             | 0.20        |                   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND              | 1.0          | ND             | 0.20        | -                 |
| 100-44-7    | Benzyl Chloride             | ND              | 1.0          | ND             | 0.19        |                   |
| 541-73-1    | 1,3-Dichlorobenzene         | ND              | 1.0          | ND             | 0.17        |                   |
| 106-46-7    | 1,4-Dichlorobenzene         | ND              | 1.0          | ND             | 0.17        |                   |
| 95-50-1     | 1,2-Dichlorobenzene         | ND              | 1.0          | ND             | 0.17        |                   |
| 5989-27-5   | d-Limonene                  | ND              | 1.0          | ND             | 0.18        |                   |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND              | 1.0          | ND             | 0.10        |                   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND              | 1.0          | ND             | 0.13        |                   |
| 91-20-3     | Naphthalene                 | ND              | 1.0          | ND             | 0.19        |                   |
| 87-68-3     | Hexachlorobutadiene         | ND              | 1.0          | ND             | 0.094       |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

# RESULTS OF ANALYSIS Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Project ID:

**WRS** 

CAS Project ID: P2600986

# **Surrogate Spike Recovery Results**

Test Code:

**EPA TO-15** 

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Date C

Date Collected: 4/17/06

Analyst:

Rusty Bravo

Date Received: 4/18/06

Sampling Media:

Silco Canister(s)

Date Analyzed: 4/18/06

Test Notes:

|                    |               | 1,2-Dichloroethane-d4 |            | Toluene-d8 |            | Bromofluorobenzene |            | Data      |
|--------------------|---------------|-----------------------|------------|------------|------------|--------------------|------------|-----------|
| Client Sample ID   | CAS Sample ID | %                     | Acceptance | %          | Acceptance | %                  | Acceptance | Qualifier |
|                    |               | Recovered             | Limits     | Recovered  | Limits     | Recovered          | Limits     |           |
| Method Blank       | P060418-MB    | 104                   | 70-140     | 99         | 70-140     | 95                 | 70-140     |           |
| Lab Control Sample | P060418-LCS   | 115                   | 70-140     | 100        | 70-140     | 94                 | 70-140     |           |
| L-1                | P2600986-001C | 128                   | 70-140     | 99         | 70-140     | 96                 | 70-140     |           |

# **RESULTS OF ANALYSIS**

Page 1 of 3

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: WRS

CAS Project ID: P2600986

CAS Sample ID: P060418-LCS

# Laboratory Control Sample (LCS) Summary

Test Code:

**EPA TO-15** 

Date Collected:

NA

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Date Received:

NA

Analyst:

Rusty Bravo

Date Analyzed:

4/18/06

Sampling Media: Test Notes:

Silco Canister

Volume(s) Analyzed:

NA Liter

|           |                                     | Amount | Amount    |          | CAS        |           |
|-----------|-------------------------------------|--------|-----------|----------|------------|-----------|
| CAS#      | Compound                            | Spiked | Recovered | %        | Acceptance | Data      |
|           |                                     | ng     | ng        | Recovery | Limits     | Qualifier |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)    | 25.8   | 26.4      | 103      | 68-124     |           |
| 74-87-3   | Chloromethane                       | 25.3   | 22.3      | 88       | 65-120     |           |
|           | 1,2-Dichloro-1,1,2,2-               |        |           |          |            |           |
| 76-14-2   | tetrafluoroethane (CFC 114)         | 26.3   | 20.2      | 77       | 47-130     |           |
| 75-01-4   | Vinyl Chloride                      | 25.8   | 24.0      | 93       | 67-127     |           |
| 106-99-0  | 1,3-Butadiene                       | 27.0   | 21.1      | 78       | 65-118     |           |
| 74-83-9   | Bromomethane                        | 25.8   | 25.1      | 97       | 65-134     |           |
| 75-00-3   | Chloroethane                        | 26.0   | 23.2      | 89       | 71-121     |           |
| 64-17-5   | Ethanol                             | 24.0   | 23.5      | 98       | 66-133     |           |
| 75-05-8   | Acetonitrile                        | 23.8   | 22.1      | 93       | 64-124     |           |
| 107-02-8  | Acrolein                            | 23.5   | 18.6      | 79       | 61-121     |           |
| 67-64-1   | Acetone                             | 27.3   | 22.6      | 83       | 62-113     |           |
| 75-69-4   | Trichlorofluoromethane              | 24.3   | 25.6      | 106      | 68-130     |           |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)      | 24.8   | 23.5      | 95       | 72-119     |           |
| 107-13-1  | Acrylonitrile                       | 24.5   | 22.6      | 92       | 71-129     |           |
| 75-35-4   | 1,1-Dichloroethene                  | 27.5   | 25.6      | 93       | 74-126     |           |
| 75-09-2   | Methylene chloride                  | 27.3   | 24.5      | 90       | 68-120     |           |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride) | 25.5   | 19.5      | 76 .     | 61-128     |           |
| 76-13-1   | Trichlorotrifluoroethane            | 27.5   | 26.2      | 95       | 68-127     |           |
| 75-15-0   | Carbon Disulfide                    | 25.0   | 24.3      | 97       | 69-126     |           |
| 156-60-5  | trans-1,2-Dichloroethene            | 26.8   | 25.8      | 96       | 76-124     |           |
| 75-34-3   | 1,1-Dichloroethane                  | 27.3   | 24.0      | 88       | 75-120     |           |
| 1634-04-4 | Methyl tert-Butyl Ether             | 27.0   | 26.2      | 97       | 68-123     |           |
| 108-05-4  | Vinyl Acetate                       | 25.8   | 21.4      | 83       | 56-139     |           |

Date: 419106
Page No.:

#### RESULTS OF ANALYSIS Page 2 of 3

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: WRS

CAS Project ID: P2600986 CAS Sample ID: P060418-LCS

# Laboratory Control Sample (LCS) Summary

Test Code:

**EPA TO-15** 

Instrument ID: Analyst:

Rusty Bravo

Sampling Media: Test Notes:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Silco Canister

Date Collected:

NA

Date Received:

NA

Date Analyzed:

4/18/06

Volume(s) Analyzed:

NA Liter

| CAS#       | Compound                  | Amount<br>Spiked | Amount<br>Recovered | %        | CAS<br>Acceptance | Data      |
|------------|---------------------------|------------------|---------------------|----------|-------------------|-----------|
|            |                           | ng               | ng                  | Recovery | Limits            | Qualifier |
| 78-93-3    | 2-Butanone (MEK)          | 27.3             | 25.6                | 94       | 74-126            |           |
| 156-59-2   | cis-1,2-Dichloroethene    | 27.3             | 26.5                | 97       | 77-122            |           |
| 110-54-3   | n-Hexane                  | 27.3             | 23.9                | 88       | 72-119            |           |
| 67-66-3    | Chloroform                | 28.5             | 28.7                | 101      | 75-119            |           |
| 107-06-2   | 1,2-Dichloroethane        | 26.8             | 28.5                | 107      | 74-125            |           |
| 71-55-6    | 1,1,1-Trichloroethane     | 27.0             | 29.2                | 108      | 75-129            |           |
| 71-43-2    | Benzene                   | 27.0             | 23.8                | 88       | 69-118            |           |
| 56-23-5    | Carbon Tetrachloride      | 26.5             | 29.6                | 112      | 72-139            |           |
| 78-87-5    | 1,2-Dichloropropane       | 26.8             | 23.9                | 89       | 75-122            |           |
| 75-27-4    | Bromodichloromethane      | 28.3             | 29.7                | 105      | 79-125            |           |
| 79-01-6    | Trichloroethene           | 28.3             | 26.3                | 93       | 74-123            |           |
| 123-91-1   | 1,4-Dioxane               | 28.3             | 27.0                | 96       | 80-128            |           |
| 10061-01-5 | cis-1,3-Dichloropropene   | 25.8             | 24.4                | 95       | 81-126            |           |
| 108-10-1   | 4-Methyl-2-pentanone      | 27.3             | 25.7                | 94       | 78-132            |           |
| 10061-02-6 | trans-1,3-Dichloropropene | 28.8             | 28.5                | 99       | 80-130            |           |
| 79-00-5    | 1,1,2-Trichloroethane     | 26.5             | 24.9                | 94       | 76-123            |           |
| 108-88-3   | Toluene                   | 26.8             | 24.9                | 93       | 74-124            |           |
| 591-78-6   | 2-Hexanone                | 27.0             | 26.9                | 100      | 77-140            |           |
| 124-48-1   | Dibromochloromethane      | 27.0             | 29.3                | 109      | 81-139            | -         |
| 106-93-4   | 1,2-Dibromoethane         | 26.5             | 26.4                | 100      | 77-133            |           |
| 123-86-4   | n-Butyl Acetate           | 25.8             | 24.1                | 94       | 71-146            |           |
| 127-18-4   | Tetrachloroethene         | 26.5             | 24.8                | 94       | 71-135            |           |

Verified By:\_

#### **RESULTS OF ANALYSIS** Page 3 of 3

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: WRS

CAS Project ID: P2600986

CAS Sample ID: P060418-LCS

# **Laboratory Control Sample (LCS) Summary**

Test Code: Instrument ID: **EPA TO-15** 

Tekmar AUTOCAN/HP5973/HP6890/MS3

Analyst:

Silco Canister

Sampling Media: Test Notes:

Rusty Bravo

Date Collected:

NA

Date Received:

NA

Date Analyzed:

4/18/06

Volume(s) Analyzed:

NA Liter

| CAS#        | Compound                    | Amount<br>Spiked<br>ng | Amount<br>Recovered<br>ng | % Recovery | CAS Acceptance Limits | Data<br>Qualifier |
|-------------|-----------------------------|------------------------|---------------------------|------------|-----------------------|-------------------|
| 108-90-7    | Chlorobenzene               | 26.8                   | 25.0                      | 93         | 76-126                |                   |
| 100-41-4    | Ethylbenzene                | 26.5                   | 26.4                      | 100        | 77-127                |                   |
| 179601-23-1 | m,p-Xylenes                 | 58.0                   | 59.7                      | 103        | 77-128                |                   |
| 75-25-2     | Bromoform                   | 29.5                   | 30.4                      | 103        | 77-143                |                   |
| 100-42-5    | Styrene                     | 26.5                   | 26.0                      | 98         | 71-139                |                   |
| 95-47-6     | o-Xylene                    | 28.3                   | 28.7                      | 102        | 76-128                |                   |
| 111-84-2    | n-Nonane                    | 26.3                   | 25.4                      | 97         | 73-131                |                   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 28.3                   | 26.9                      | 95         | 79-130                |                   |
| 98-82-8     | Cumene                      | 27.3                   | 27.7                      | 102        | 77-128                |                   |
| 80-56-8     | alpha-Pinene                | 26.3                   | 24.9                      | 95         | 66-140                |                   |
| 622-96-8    | 4-Ethyltoluene              | 27.3                   | 27.7                      | 102        | 74-132                |                   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 26.5                   | 27.1                      | 102        | 72-134                |                   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 26.8                   | 27.9                      | 104        | 74-134                |                   |
| 100-44-7    | Benzyl Chloride             | 26.5                   | 28.5                      | 108        | 72-174                |                   |
| 541-73-1    | 1,3-Dichlorobenzene         | 26.3                   | 25.8                      | 98         | 73-137                |                   |
| 106-46-7    | 1,4-Dichlorobenzene         | 27.0                   | 26.9                      | 100        | 71-136                |                   |
| 95-50-1     | 1,2-Dichlorobenzene         | 26.8                   | 26.0                      | 97         | 70-140                |                   |
| 5989-27-5   | d-Limonene                  | 26.0                   | 23.0                      | 88         | 20-202                |                   |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | 25.8                   | 26.1                      | 101        | 77-157                |                   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 28.3                   | 27.7                      | 98         | 68-154                |                   |
| 91-20-3     | Naphthalene                 | 25.8                   | 25.6                      | 99         | 63-160                |                   |
| 87-68-3     | Hexachlorobutadiene         | 27.5                   | 27.7                      | 101        | 61-147                |                   |

Rc Date: 4/19/06

# Columbia Analytical Services, Inc. Sample Acceptance Check Form

|                    |                             |           | Sam                                       | iple Acceptance Check               | Form                                |                     |                       |             |       |
|--------------------|-----------------------------|-----------|-------------------------------------------|-------------------------------------|-------------------------------------|---------------------|-----------------------|-------------|-------|
| Client             | : Weston Solutions,         | Inc.      | 1000                                      |                                     | Work order:                         | P2600986            |                       |             |       |
| Project            | : WRS                       |           |                                           |                                     |                                     |                     |                       |             |       |
|                    | Sample(s) received          | on:       | 4/18/06                                   | Date opened:                        | 4/18/0                              | 6 by:               | MZ                    |             |       |
| Vote: This         | form is used for all sample | es recei  | ved by CAS. The use of                    | this form for custody seals is stri | ctly meant to indicate              | presence/absence a  | nd not as ar          | n indicatio | on of |
| ompliance          | e or nonconformity. Therm   | nal prese | ervation and pH will only                 | be evaluated either at the reque    | st of the client or as re           | quired by the metho | od/SOP.               |             |       |
|                    |                             |           |                                           |                                     |                                     |                     | <b>Yes</b>            | No          | N/A   |
| 1                  | Were custody seals          | on ou     | tside of cooler/Box?                      |                                     |                                     |                     |                       | X           |       |
|                    | Location of seal(s          | )?        |                                           |                                     |                                     | Sealing Lid?        |                       |             | X     |
|                    | Were signature an           | d date    | included?                                 |                                     |                                     |                     |                       |             | X     |
|                    | Were seals intact?          |           |                                           |                                     |                                     |                     |                       |             | X     |
|                    | Were custody seals          | on out    | side of sample conta                      | iner?                               |                                     |                     |                       | X           |       |
|                    | Location of seal(s)         | )?        |                                           |                                     |                                     | Sealing Lid?        |                       |             | X     |
|                    | Were signature an           | d date    | included?                                 |                                     |                                     |                     |                       |             | X     |
|                    | Were seals intact?          |           |                                           |                                     |                                     |                     |                       |             | X     |
| 2                  | Were sample conta           | iners p   | properly marked with                      | h client sample ID?                 |                                     |                     | X                     |             |       |
| 3                  | Did sample contain          | iers ar   | rive in good condition                    | on?                                 |                                     |                     | X                     |             |       |
| 4                  | Were chain-of-cust          | ody pa    | apers used and filled                     | out?                                |                                     |                     | X                     |             |       |
| 5                  | Did sample contain          | er lab    | els and/or tags agree                     | e with custody papers?              |                                     |                     | X                     |             |       |
| 6                  | Was sample volume           | e recei   | ved adequate for ana                      | alysis?                             |                                     |                     | X                     |             |       |
| 7                  | Are samples within          | specifi   | ied holding times?                        |                                     |                                     |                     | X                     |             |       |
| 8                  |                             |           |                                           | n) of cooler at receipt adhe        | ered to?                            |                     |                       |             | X     |
|                    |                             |           | Cooler Temperature                        |                                     | °C                                  |                     |                       |             |       |
|                    |                             |           | Blank Temperature                         |                                     | °C                                  |                     |                       |             |       |
| 9                  | Is pH (acid) preserv        | vation    |                                           | g to method/SOP or Client           | specified informa                   | ation?              |                       |             | X     |
|                    |                             |           | *                                         | amples are <b>pH</b> (acid) pre     | •                                   |                     |                       |             | X     |
|                    |                             |           | for presence/absence                      |                                     |                                     |                     |                       |             | X     |
|                    |                             |           |                                           | nalyst check the sample pl          | H and if necessar                   | y alter it?         |                       |             | X     |
| 10                 | Tubes: A                    | re the    | tubes capped and int                      | tact?                               |                                     |                     | X                     |             |       |
|                    | D                           | o they    | contain moisture?                         |                                     |                                     |                     |                       | X           |       |
| 11                 | Badges:                     | Are the   | badges properly cap                       | oped and intact?                    |                                     |                     |                       |             | X     |
|                    | A                           | re dua    | l bed badges separate                     | ed and individually capped          | and intact?                         |                     |                       |             | X     |
|                    |                             |           |                                           |                                     |                                     | 1                   |                       |             |       |
|                    | Lab Sample ID               |           | Required pH<br>(as received, if required) | pH<br>(as received, if required)    | VOA Headspace<br>(Presence/Absence) |                     | ipt / Preso<br>Commen |             |       |
|                    | - 00d                       |           | (as received, if required)                | (as received, it required)          |                                     |                     | Comme                 | its.        |       |
| P260098<br>P260098 |                             | -         |                                           |                                     | NA<br>NA                            |                     |                       |             |       |
| P260098            |                             | _         |                                           |                                     | NA<br>NA                            |                     |                       |             |       |
| P260098            |                             |           |                                           |                                     | NA                                  |                     |                       |             |       |
| P260098            | 6-002B                      |           |                                           |                                     | NA                                  |                     |                       |             |       |
|                    |                             |           |                                           |                                     |                                     |                     |                       |             |       |
|                    |                             |           |                                           |                                     |                                     |                     |                       |             |       |
|                    |                             | _         |                                           |                                     |                                     |                     |                       |             |       |
|                    |                             |           |                                           |                                     |                                     |                     |                       |             |       |
|                    |                             |           |                                           |                                     |                                     |                     |                       |             |       |

| <b>⊕</b> @                   |
|------------------------------|
| <b>∅</b> ■                   |
| Columbia Columbia            |
|                              |
| Analytical                   |
| Services NC                  |
| An Employee - Darred Commune |

Air Quality Laboratory 2665 Park Center Drive, Suite D Simi Valley, California 93065

# Chain of Custody Record & Analytical Service Request

Page \_\_\_\_\_ of \_\_\_\_

|     | Analy<br>Serv                                                 | tical                | Simi Valley,      |                     | 3065              |                 |                            | me by Close of B                |                                   |             |                  |            | CAS Project                  | NO.<br>. C.C.J                |
|-----|---------------------------------------------------------------|----------------------|-------------------|---------------------|-------------------|-----------------|----------------------------|---------------------------------|-----------------------------------|-------------|------------------|------------|------------------------------|-------------------------------|
| ,   | Serv                                                          | /ices™ <sup>c</sup>  | Phone (805)       |                     | (                 | 1 Day (100%     | ) 2 Day (75%)              | 3 Day (50%) 4 D                 | ay (35%) 5 Da                     |             |                  |            | 19260c                       | 7486                          |
| ı   | Reporting Inform                                              | estion (Compon       | Fax (805) 52      |                     |                   | P.O. # / Billin | a Information              | _ <del></del>                   | <del></del>                       | CAS Contact |                  |            |                              |                               |
|     | TedLe                                                         |                      | ly Name & Au      | ui <del>e</del> 55) |                   | F.O. # / Billi  | ig iniormation             |                                 |                                   | Anghe       | is Mathed        | l and/or A | nalidas                      |                               |
|     | ICU LO                                                        | (1)                  | ٠. ا م            |                     |                   |                 |                            |                                 |                                   | Arranys     | sis Method       | and/or A   |                              |                               |
|     |                                                               | Solutio              |                   | •                   |                   |                 |                            |                                 |                                   | _           | 1 . 9            |            | ~३                           |                               |
|     | Attention: OK                                                 | emos, M              | <u></u>           |                     |                   | Project Name    | e<br>                      |                                 |                                   |             | Carboxylic Acids |            | Reduced<br>Sulfur compounds  |                               |
| Ì   | Phone                                                         | L C 6 3 / ·          | Fax               |                     |                   | Project Numi    | ber                        |                                 |                                   |             | A                |            | _ \$                         | Comments e.g. Preservative or |
|     | (517) 381                                                     |                      |                   |                     |                   |                 |                            |                                 |                                   | ا ا         | 1;5              | · <b>v</b> | 50                           | specific instructions         |
|     | Email Address fo                                              |                      |                   | ر دلی               |                   | Sampler (Pri    | nt & Sign)<br>Posavatz     | Think                           | not !                             | 2           | ×                | V0C5       | 2 3                          |                               |
|     | Ted. La Mari                                                  | <u>ealWestercolu</u> | hansing MOOS      | avatzag             | 1                 | Sample Type     |                            | 11/1/11/                        | )                                 | 1 2         | 10               | 2          | 104                          |                               |
|     | Client Sample ID                                              | )                    | Date<br>Collected | Time<br>Collected   | Lab<br>Sample No. | /Air/I imulal   | Canister ID<br>(Bar Code#) | Flow controller<br>(Bar Code #) | Sample<br>Volume                  | Plmines     | i.               |            | S. S.                        |                               |
| 1,  | 1                                                             |                      | 4/17/06           | 13.48               | 0                 | Air/hol         | e                          |                                 |                                   | $\sim$      |                  |            | 1                            | 24hr TAT                      |
| ۵.  | L-I                                                           |                      | 4/17/06           | 13:49               |                   | AirHube         | 1740 6 t i 2 k             |                                 |                                   |             | $\times$         |            |                              | 11                            |
| 3.  | レー                                                            |                      | 4/17/06           | 13:39               | 下                 | Air             | 9818                       | 35-1.5-004                      |                                   |             |                  | $\times$   | $\times$                     | -2.411                        |
| 4.  | Field b                                                       | lank                 | 41.7/06           | Ja: 15              | (2)               | Air/tube        |                            |                                 |                                   | $\times$    |                  |            |                              | ft.                           |
| 5,  | Fieldb                                                        |                      | 4/17/06           | 12:15               | 坐                 | Air/tube        | 170600208                  |                                 |                                   |             | $\sim$           |            |                              | 11                            |
|     |                                                               |                      |                   |                     |                   |                 |                            |                                 |                                   |             |                  |            |                              |                               |
|     | <br>                                                          |                      |                   |                     | (LPM)             |                 |                            |                                 |                                   |             |                  |            |                              | ·                             |
|     |                                                               |                      |                   |                     |                   | Post. Flow      |                            | ·                               |                                   |             |                  |            |                              |                               |
|     | 1. Start                                                      | 1208                 | stop              | 1348                | 1.033             | 1.003           |                            |                                 |                                   |             |                  |            |                              |                               |
|     | a, start                                                      | 1209                 | Stop              | 1349                | 1.018             | 0.9834          |                            |                                 |                                   |             |                  |            |                              |                               |
|     | 3, Start                                                      | 1209                 | stop              | 1339                |                   |                 |                            |                                 |                                   |             |                  |            |                              |                               |
|     |                                                               |                      |                   |                     |                   |                 |                            |                                 |                                   |             |                  |            |                              |                               |
|     |                                                               |                      |                   |                     |                   |                 |                            |                                 |                                   |             |                  |            |                              |                               |
|     |                                                               |                      |                   | -                   |                   |                 |                            | ÷                               |                                   |             |                  |            |                              |                               |
|     |                                                               |                      |                   |                     |                   |                 |                            |                                 |                                   |             |                  |            |                              | _                             |
| 1 4 | Report Tier Leve<br>Tier I - (default if<br>Tier II (QC forms | not specified)       | ect               | Tier III (QC        | , Raw Data, S     | Spectra) 10%    | Surcharge                  |                                 | EDD required                      | Yes / No    |                  |            | Project Requ                 | uirements (MRLs, QAPP)        |
|     | Relinguished by:                                              | Signature)           | mt                |                     | Date: 4/17/4      | Time:           | Receive 1 by: (S           | Signature)                      |                                   |             | Date:<br>411406  | Time: 0430 | †                            |                               |
|     | Relinduished by: (S                                           | Siĝnatúre)           | 0                 |                     | Date:             | Time:           | Received by: (S            |                                 | · · · · · · · · · · · · · · · · · | <del></del> | Date:            | Time:      | 1                            |                               |
|     | Relinquished by: (S                                           |                      |                   |                     | Date:             | Time:           | Received by: (S            | Signature)                      |                                   |             | Date:            | Time:      | Cooler / Blar<br>Temperature |                               |

# LaMarre, Theodore

W - 1

From:

Korobka, Linda

Sent:

Wednesday, April 19, 2006 12:59 PM

To:

LaMarre, Theodore

**Subject:** 

Validation for Williamsburg Receiving and Storage Site Air Analytical Data

Ted.

I have reviewed and validated the Williamsburg Receiving and Storage Site Air Analytical Data. The following summarizes my findings.

Columbia Analytical Services, Inc., Simi Valley California Project ID P2600955

One investigative air sample was collected inside the maintenance building on site by GRT on 4/13/06. The sample was analyzed for Volatile Organic Compounds (VOCs) by U.S. EPA Method TO-15, Reduced Sulfur Compounds by ASTM D 5504-01, Carboxylic Acids by Columbia Analytical Services SOP # AQL 102, and Amines by Columbia Analytical Services SOP # AQL 101.

A field blank was prepared by opening a silica gel tube (for the carboxylic acids) and a treated alumina tube (for the amines) and exposing the open tubes to ambient air on site during field activities on 4/13/06.

All samples were received in good condition by the laboratory and analyzed within the required holding times.

The Amine field blank sample and carboxylic acid field blank sample were free of contamination. The VOC method blank, Reduced Sulfur Compounds method blank, Carboxylic Acids method blank and Amines method blank were free of contamination.

All VOC surrogate spike recoveries were within the laboratory generated quality control limits.

All laboratory control sample recoveries were within the laboratory generated quality control limits for the VOC analyses, Reduced Sulfur Compounds analyses, Carboxylic Acid analyses and Amines analyses.

The data is acceptable for use with no data qualifiers.

Linda Korobka
Weston Solutions of Michigan, Inc.
Telephone: (517) 381-5936
Fax: (517) 381-5921
Linda.Korobka@westonsolutions.com

1



April 18, 2006

RECEIVED

Mr. Ted LaMarre Weston Solutions of Michigan, Inc. 2501 Jolly Road, Suite 100 Okemos, MI 48864 MAY 0 1 2006

Weston Solutions, Inc. of Michigan

RE: P2600955

WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

Dear Mr. LaMarre:

Enclosed are the results of the sample(s) submitted to our laboratory on April 14, 2006. For your reference, these analyses have been assigned our service request number P2600955.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report. Your report contains pages.

Columbia Analytical Services is certified by the California Department of Health Services, Certificate No. 2380; Arizona Department of Health Services, Certificate No. AZ0550; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661. Please contact me for specific method(s) and analyte(s) corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Katt Gullice

Kate Aguilera

Project Manager



#### LABORATORY REPORT

Client:

WESTON SOLUTIONS OF MICHIGAN, INC.

Date of Report:

04/18/06

Address:

2501 Jolly Road, Suite 100

Date Received:

04/14/06

**Okemos**, MI 48864

CAS Project No:

P2600955

Contact:

Mr. Ted LaMarre

Purchase Order:

Verbal

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

One (1) Stainless Steel Silco Canister labeled:

"W-1"

Two (2) Silica Gel Tubes labeled:

"W-1"

"Field Blank"

Two (2) Treated Alumina Tube Samples labeled:

"W-1"

"Field Blank"

The samples were received at the laboratory under chain of custody on April 14, 2006. The client requested and received one day rush results. The samples were received intact. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time that they were received at the laboratory.

#### Sulfur Analysis

The Silco canister sample was analyzed for twenty sulfur compounds per ASTM D 5504-01 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan.

#### **Amines Analysis**

The Treated alumina tube samples were analyzed for amines utilizing a gas chromatograph (GC) equipped with a nitrogen phosphorus detector (NPD).

Reviewed and Approved:

Madeleine Dangazyan GC-SV Team Leader

Air Quality Laboratory

Reviewed and Approved:

Chris Parnell

GCMS-VOA Team Leader

Air Quality Laboratory



CAS Project No:

P2600955

#### Carboxylic Acid Analysis

The Silica gel tube samples were analyzed for carboxylic acids using combined gas chromatography/mass spectrometry (GC/MS). The analyses were performed using a Hewlett Packard Model 5890 Series II gas chromatograph/Model 5970 mass selective detector.

# Volatile Organic Compound Analysis

The Silco canister sample was also analyzed by combined gas chromatography/mass spectrometry (GC/MS) for selected volatile organic compounds. The analyses were performed according to the methodology outlined in EPA Method TO-15. The analyses were performed by gas chromatography/mass spectrometry, utilizing a direct cryogenic trapping technique. The analytical system used was comprised of a Hewlett Packard Model 5973 GC/MS/DS interfaced to a Tekmar AutoCan Elite whole air inlet system/cryogenic concentrator. A 100% Dimethylpolysiloxane capillary column (RT<sub>x</sub>-1, Restek Corporation, Bellefonte, PA) was used to achieve chromatographic separation.

The results of analyses are given on the attached data sheets. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

# RESULTS OF ANALYSIS Page 1 of 1

Client: Weston Solutions of Michigan, Inc.

Client Sample ID: W-1 CAS Project ID: P2600955

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00 CAS Sample ID: P2600955-001

Test Code: ASTM D 5504-01 Date Collected: 4/13/06

Instrument ID:Agilent 6890A/GC13/SCDTime Collected: 15:04Analyst:Zheng WangDate Received: 4/14/06Sampling Media:Silco CanisterDate Analyzed: 4/14/06

Test Notes: Time Analyzed: 10:59

Container ID: SL00084 Volume(s) Analyzed: 1.0 ml(s)

Pi 1 = -1.0 Pf 1 = 3.5

D.F.= 1.33

|           |                       | Result | MRL   | Result | MRL  | Data      |
|-----------|-----------------------|--------|-------|--------|------|-----------|
| CAS#      | Compound              | ·      |       |        |      | Qualifier |
|           |                       | μg/m³  | μg/m³ | ppbV   | ppbV |           |
| 7783-06-4 | Hydrogen Sulfide      | 1,400  | 9.3   | 990    | 6.6  |           |
| 463-58-1  | Carbonyl Sulfide      | ND     | 16    | ND     | 6.6  |           |
| 74-93-1   | Methyl Mercaptan      | 26     | 13    | 13     | 6.6  |           |
| 75-08-1   | Ethyl Mercaptan       | ND     | 17    | ND     | 6.6  |           |
| 75-18-3   | Dimethyl Sulfide      | ND     | 17    | ND     | 6.6  |           |
| 75-15-0   | Carbon Disulfide      | ND     | 10    | ND     | 3.3  |           |
| 75-33-2   | Isopropyl Mercaptan   | ND     | 21    | ND     | 6.6  | 1         |
| 75-66-1   | tert-Butyl Mercaptan  | ND     | 24    | ND     | 6.6  |           |
| 107-03-9  | n-Propyl Mercaptan    | ND     | 21    | ND     | 6.6  |           |
| 624-89-5  | Ethyl Methyl Sulfide  | ND     | 21    | ND     | 6.6  |           |
| 110-02-1  | Thiophene             | ND     | 23    | ND     | 6.6  |           |
| 513-44-0  | Isobutyl Mercaptan    | ND     | 24    | ND     | 6.6  |           |
| 352-93-2  | Diethyl Sulfide       | ND     | 24    | ND     | 6.6  |           |
| 109-79-5  | n-Butyl Mercaptan     | ND     | 24    | ND     | 6.6  | 1         |
| 624-92-0  | Dimethyl Disulfide    | ND     | 13    | ND     | 3.3  | 1         |
| 616-44-4  | 3-Methylthiophene     | ND     | 27    | ND     | 6.6  |           |
| 110-01-0  | Tetrahydrothiophene   | ND     | 24    | ND     | 6.6  |           |
| 638-02-8  | 2,5-Dimethylthiophene | ND     | 30    | ND     | 6.6  |           |
| 872-55-9  | 2-Ethylthiophene      | ND     | 30    | ND     | 6.6  |           |
| 110-81-6  | Diethyl Disulfide     | ND     | 17    | ND     | 3.3  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Re Date: 4/17/06

00955SVG.RD1 - Sample

# RESULTS OF ANALYSIS Page 1 of 1

Client: Weston Solutions of Michigan, Inc.

Client Sample ID: W-1 CAS Project ID: P2600955

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00 CAS Sample ID: P2600955-001DUP

Test Code:

ASTM D 5504-01

Instrument ID:

Agilent 6890A/GC13/SCD

Analyst:

Zheng Wang

Sampling Media:

Silco Canister

Test Notes:

Container ID: SL00084

Date Collected: 4/13/06

Time Collected: 15:04

Date Received: 4/14/06

Date Analyzed: 4/14/06

Time Analyzed: 11:22

Volume(s) Analyzed:

1.0 ml(s)

Pi 1 = -1.0

Pf 1 = 3.5

D.F.= 1.33

|           |                       | Result | MRL   | Result | MRL  | Data      |
|-----------|-----------------------|--------|-------|--------|------|-----------|
| CAS#      | Compound              |        |       |        |      | Qualifier |
|           |                       | μg/m³  | μg/m³ | ppbV   | ppbV |           |
| 7783-06-4 | Hydrogen Sulfide      | 1,400  | 9.3   | 1,000  | 6.6  |           |
| 463-58-1  | Carbonyl Sulfide      | ND     | 16    | ND     | 6.6  |           |
| 74-93-1   | Methyl Mercaptan      | 26     | 13    | 13     | 6.6  |           |
| 75-08-1   | Ethyl Mercaptan       | ND     | 17    | ND     | 6.6  |           |
| 75-18-3   | Dimethyl Sulfide      | ND     | 17    | ND     | 6.6  |           |
| 75-15-0   | Carbon Disulfide      | ND     | 10    | ND     | 3.3  |           |
| 75-33-2   | Isopropyl Mercaptan   | ND     | 21    | ND     | 6.6  |           |
| 75-66-1   | tert-Butyl Mercaptan  | ND     | 24    | ND     | 6.6  |           |
| 107-03-9  | n-Propyl Mercaptan    | ND     | 21    | ND     | 6.6  |           |
| 624-89-5  | Ethyl Methyl Sulfide  | ND     | 21    | ND     | 6.6  |           |
| 110-02-1  | Thiophene             | ND ·   | 23    | ND     | 6.6  |           |
| 513-44-0  | Isobutyl Mercaptan    | ND     | 24    | ND     | 6.6  |           |
| 352-93-2  | Diethyl Sulfide       | ND     | 24    | ND     | 6.6  |           |
| 109-79-5  | n-Butyl Mercaptan     | ND     | 24    | ND     | 6.6  |           |
| 624-92-0  | Dimethyl Disulfide    | ND     | 13    | ND     | 3.3  |           |
| 616-44-4  | 3-Methylthiophene     | ND     | 27    | ND     | 6.6  | 1         |
| 110-01-0  | Tetrahydrothiophene   | ND     | 24    | ND     | 6.6  |           |
| 638-02-8  | 2,5-Dimethylthiophene | ND     | 30    | ND     | 6.6  |           |
| 872-55-9  | 2-Ethylthiophene      | ND     | 30    | ND     | 6.6  |           |
| 110-81-6  | Diethyl Disulfide     | ND     | 17    | ND     | 3.3  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: RG Date: 4/106

#### **RESULTS OF ANALYSIS** Page 1 of I

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Method Blank

CAS Project ID: P2600955

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Sample ID: P060414-MB

Test Code:

ASTM D 5504-01

Instrument ID:

Agilent 6890A/GC13/SCD

Analyst:

Zheng Wang

Sampling Media:

Silco Canister

Test Notes:

Date Received: NA Date Analyzed: 4/14/06 Time Analyzed: 09:30

Date Collected: NA

Time Collected: NA

Volume(s) Analyzed:

1.0 ml(s)

D.F.=1.00

| ,         |                       | Result | MRL         | Result | MRL  | Data      |
|-----------|-----------------------|--------|-------------|--------|------|-----------|
| CAS#      | Compound              |        |             |        |      | Qualifier |
|           |                       | μg/m³  | $\mu g/m^3$ | ppbV   | ppbV |           |
| 7783-06-4 | Hydrogen Sulfide      | ND     | 7.0         | ND     | 5.0  |           |
| 463-58-1  | Carbonyl Sulfide      | ND     | 12          | ND     | 5.0  |           |
| 74-93-1   | Methyl Mercaptan      | ND     | 9.8         | ND     | 5.0  |           |
| 75-08-1   | Ethyl Mercaptan       | ND     | 13          | ND     | 5.0  |           |
| 75-18-3   | Dimethyl Sulfide      | ND     | 13          | ND     | 5.0  |           |
| 75-15-0   | Carbon Disulfide      | ND     | 7.8         | ND     | 2.5  |           |
| 75-33-2   | Isopropyl Mercaptan   | ND     | 16          | ND     | 5.0  |           |
| 75-66-1   | tert-Butyl Mercaptan  | ND     | 18          | ND     | 5.0  | 1         |
| 107-03-9  | n-Propyl Mercaptan    | ND     | 16          | ND     | 5.0  | 1         |
| 624-89-5  | Ethyl Methyl Sulfide  | ND     | 16          | ND     | 5.0  |           |
| 110-02-1  | Thiophene             | ND     | 17          | ND     | 5.0  |           |
| 513-44-0  | Isobutyl Mercaptan    | ND     | 18          | ND     | 5.0  |           |
| 352-93-2  | Diethyl Sulfide       | ND     | 18          | ND     | 5.0  | 1         |
| 109-79-5  | n-Butyl Mercaptan     | ND     | 18          | ND     | 5.0  | 1         |
| 624-92-0  | Dimethyl Disulfide    | ND     | 9.6         | ND     | 2.5  |           |
| 616-44-4  | 3-Methylthiophene     | ND     | 20          | ND     | 5.0  |           |
| 110-01-0  | Tetrahydrothiophene   | ND     | 18          | ND     | 5.0  |           |
| 638-02-8  | 2,5-Dimethylthiophene | ND     | 23          | ND     | 5.0  |           |
| 872-55-9  | 2-Ethylthiophene      | ND     | 23          | ND     | 5.0  |           |
| 110-81-6  | Diethyl Disulfide     | ND     | 12          | ND     | 2.5  | 1         |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

| Verified By:_ | Re | Date:_ | 4/17/06   |
|---------------|----|--------|-----------|
|               |    |        | Dana Ma . |

#### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

**Client Sample ID:** 

**Lab Control Sample** 

CAS Project ID: P2600955

**Client Project ID:** 

WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Sample ID: P060414-LCS

#### **Laboratory Control Sample Summary**

Test Code:

ASTM D 5504-01

Instrument ID:

Agilent 6890A/GC13/SCD

Analyst:

Zheng Wang

Sampling Media:

Silco Canister

Date Received: NA

Date Analyzed: 4/14/06

Date Sampled: NA

Volume(s) Analyzed: NA

Test Notes:

| Compound         | Spike Amount<br>LCS<br>ppbV | Result<br>LCS<br>ppbV | % Recovery<br>LCS | CAS<br>Acceptance<br>Limits |
|------------------|-----------------------------|-----------------------|-------------------|-----------------------------|
| Hydrogen Sulfide | 1,980                       | 1,740                 | 88                | 70-129                      |
| Carbonyl Sulfide | 2,130                       | 1,980                 | 93                | 80-138                      |
| Methyl Mercaptan | 2,080                       | 2,020                 | 97                | 78-128                      |

**RESULTS OF ANALYSIS** Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: W-1

Client Project ID:

WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955

CAS Sample ID: P2600955-001B

Test Code:

GC/NPD

Instrument ID:

Agilent 6890N/GC14/NPD

Analyst:

Madeleine Dangazyan

Sampling Media:

Treated Alumina Tube

Test Notes:

BC, DE

Date Collected: 4/13/06

Date Received: 4/14/06

Date Analyzed: 4/14/06

Desorption Volume:

2.0 ml

Volume Sampled:

102.15 Liters

|                   |                  | Result  | Result | MRL   | Result | MRL  | Data     |
|-------------------|------------------|---------|--------|-------|--------|------|----------|
| CAS#              | Compound         |         | 1      |       |        |      | Qualfier |
|                   |                  | μg/Tube | μg/m³  | μg/m³ | ppbV   | ppbV |          |
| 124-40-3          | Dimethylamine    | < 0.20  | ND     | 2.0   | ND     | 1.1  |          |
| 75-04-7           | Ethylamine       | < 0.22  | ND     | 2.2   | ND     | 1.2  |          |
| 75-50-3           | Trimethylamine   | < 0.19  | ND     | 1.8   | ND     | 0.76 |          |
| 75-31-0           | Isopropylamine   | < 0.20  | ND     | 2.0   | ND     | 0.82 |          |
| 75-64-9           | t-Butylamine     | < 0.21  | ND     | 2.0   | ND     | 0.68 |          |
| 107-10-8          | Propylamine      | < 0.20  | ND     | 1.9   | ND     | 0.80 |          |
| 109-89-7          | Diethylamine     | < 0.21  | ND     | 2.0   | ND     | 0.67 |          |
| 13952-84-6        | s-Butylamine     | < 0.20  | ND     | 2.0   | ND     | 0.66 |          |
| 78-81-9           | Isobutylamine    | < 0.19  | ND     | 1.9   | ND     | 0.62 |          |
| 109-73 <b>-</b> 9 | Butylamine       | < 0.20  | ND     | 1.9   | ND     | 0.64 |          |
| 108-18-9          | Diisopropylamine | < 0.21  | ND     | 2.0   | ND     | 0.50 |          |
| 121-44-8          | Triethylamine    | < 0.21  | ND     | 2.0   | ND     | 0.49 |          |
| 142-84-7          | Dipropylamine    | < 0.42  | ND     | 4.1   | ND     | 0.98 |          |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

NA = Not applicable

BC = Results reported are not blank corrected

DE = Results reported are corrected for desorption efficiency.

Date: 4/20/06 Verified By:

#### **RESULTS OF ANALYSIS** Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Field Blank

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955

CAS Sample ID: P2600955-002

Test Code:

GC/NPD

Instrument ID:

Agilent 6890N/GC14/NPD

Analyst:

Madeleine Dangazyan

Sampling Media:

Treated Alumina Tube

Test Notes:

BC, DE

Date Collected: 4/13/06

Date Received: 4/14/06

Date Analyzed: 4/14/06

Desorption Volume:

2.0 ml

Volume Sampled:

NA Liters

|            |                  | Result  | Result | MRL   | Result | MRL  | Data     |
|------------|------------------|---------|--------|-------|--------|------|----------|
| CAS#       | Compound         |         |        |       |        |      | Qualfier |
|            | 1                | μg/Tube | μg/m³  | μg/m³ | ppbV   | ppbV |          |
| 124-40-3   | Dimethylamine    | < 0.20  | NA     | NA    | NA     | NA   |          |
| 75-04-7    | Ethylamine       | < 0.22  | NA     | NA    | NA     | NA   |          |
| 75-50-3    | Trimethylamine   | < 0.19  | NA     | NA    | NA     | NA   |          |
| 75-31-0    | Isopropylamine   | < 0.20  | NA     | NA    | NA     | NA   |          |
| 75-64-9    | t-Butylamine     | < 0.21  | NA     | NA    | NA     | NA   |          |
| 107-10-8   | Propylamine      | < 0.20  | NA     | NA    | NA     | NA   |          |
| 109-89-7   | Diethylamine     | < 0.21  | NA     | NA    | NA     | NA   |          |
| 13952-84-6 | s-Butylamine     | < 0.20  | NA     | NA    | NA     | NA   |          |
| 78-81-9    | Isobutylamine    | < 0.19  | NA     | NA    | NA     | NA   |          |
| 109-73-9   | Butylamine       | < 0.20  | NA     | NA    | NA     | NA   |          |
| 108-18-9   | Diisopropylamine | < 0.21  | NA     | NA    | NA     | NA   |          |
| 121-44-8   | Triethylamine    | < 0.21  | NA     | NA    | NA     | NA   |          |
| 142-84-7   | Dipropylamine    | < 0.42  | NA     | NA    | NA     | NA   |          |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By: RG

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

NA = Not applicable

BC = Results reported are not blank corrected

DE = Results reported are corrected for desorption efficiency.

**RESULTS OF ANALYSIS** Page 1 of 1

**Client:** 

Weston Solutions of Michigan, Inc.

Client Sample ID: Method Blank

Client Project ID:

WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955

CAS Sample ID: P060414-MB

Test Code:

GC/NPD

Instrument ID:

Agilent 6890N/GC14/NPD

Analyst:

Madeleine Dangazyan

Sampling Media:

Treated Alumina Tube

Test Notes:

BC, DE

Date Collected: NA

Date Received: NA

Date Analyzed: 4/14/06

Desorption Volume:

2.0 ml

Volume Sampled:

NA Liters

|            |                  | Result  | Result | MRL   | Result | MRL  | Data     |
|------------|------------------|---------|--------|-------|--------|------|----------|
| CAS#       | Compound         |         |        |       |        |      | Qualfier |
|            |                  | μg/Tube | μg/m³  | μg/m³ | ppbV   | ppbV |          |
| 124-40-3   | Dimethylamine    | < 0.20  | NA     | NA    | NA     | NA   |          |
| 75-04-7    | Ethylamine       | < 0.22  | NA     | NA    | NA     | NA   |          |
| 75-50-3    | Trimethylamine   | < 0.19  | NA     | NA    | NA     | NA   |          |
| 75-31-0    | Isopropylamine   | < 0.20  | NA     | NA    | NA     | NA   |          |
| 75-64-9    | t-Butylamine     | < 0.21  | NA     | NA    | NA     | NA_  |          |
| 107-10-8   | Propylamine      | < 0.20  | NA     | NA    | NA     | NA   |          |
| 109-89-7   | Diethylamine     | < 0.21  | NA     | NA    | NA     | NA   |          |
| 13952-84-6 | s-Butylamine     | < 0.20  | NA     | NA    | NA     | NA   |          |
| 78-81-9    | Isobutylamine    | < 0.19  | NA     | NA    | NA NA  | NA   |          |
| 109-73-9   | Butylamine       | < 0.20  | NA     | NA    | NA     | NA   |          |
| 108-18-9   | Diisopropylamine | < 0.21  | NA     | NA    | NA     | NA   |          |
| 121-44-8   | Triethylamine    | < 0.21  | NA     | NA    | NA     | NA   |          |
| 142-84-7   | Dipropylamine    | < 0.42  | NA     | NA    | NA NA  | NA   |          |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

NA = Not applicable

BC = Results reported are not blank corrected

DE = Results reported are corrected for desorption efficiency.

Verified By: Re

Date: 4bolob Page No.:

#### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955

CAS Sample ID: P060414-LCS

#### **Laboratory Control Sample Summary**

Test Code:

GC/NPD

Agilent 6890N/GC14/NPD

Analyst:

Madeleine Dangazyan

Sampling Media:

Instrument ID:

Treated Alumina Tube

Test Notes:

Date Collected: NA Date Received: NA Date Analyzed: 4/14/06

Volume(s) Analyzed: NA

| Compound         | Spike Amount<br>LCS<br>μg/ml | Result<br>LCS<br>μg/ml | % Recovery<br>LCS | CAS Acceptance Limits | Data<br>Qualifier |
|------------------|------------------------------|------------------------|-------------------|-----------------------|-------------------|
| Dimethylamine    | 9.33                         | 9.15                   | 98                | 50-150                |                   |
| Ethylamine       | 11.2                         | 10.3                   | 92                | 50-150                |                   |
| Trimethylamine   | 7.44                         | 7.67                   | 103               | 50-150                |                   |
| Isopropylamine   | 18.0                         | 18.3                   | 102               | 50-150                |                   |
| t-Butylamine     | 9.26                         | 9.40                   | 102               | 50-150                |                   |
| Propylamine      | 10.6                         | 10.4                   | 98                | 50-150                |                   |
| Diethylamine     | 9.53                         | 9.39                   | 99                | 50-150                | }                 |
| s-Butylamine     | 10.2                         | 10.4                   | 102               | 50-150                |                   |
| Isobutylamine    | 11.1                         | 11.2                   | 100               | 50-150                |                   |
| Butylamine       | 12.8                         | 12.8                   | 100               | 50-150                |                   |
| Diisopropylamine | 12.1                         | 12.4                   | 103               | 50-150                |                   |
| Triethylamine    | 10.9                         | 11.0                   | 101               | 50-150                |                   |
| Dipropylamine    | 11.8                         | 12.1                   | 102               | 50-150                |                   |

Date: 4/20/06 Verified By:

#### **RESULTS OF ANALYSIS** Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: W-1

Client Project ID:

WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955

CAS Sample ID: P2600955-001C

Test Code:

GC/MS

Instrument ID:

HP5970/HP5890II+/MS4

Analyst:

Wade Henton

Sampling Media:

Silica Gel Tube

Test Notes:

BC, DE

Date Collected: 4/13/06

Date Received: 4/14/06 Date Analyzed: 4/14/06

Desorption Volume:

1.0 ml

Volume Sampled:

99.5 Liters

|          |                                     | Result  | Result | MRL   | Result | MRL  | Data     |
|----------|-------------------------------------|---------|--------|-------|--------|------|----------|
| CAS#     | Compound                            | 1       |        |       |        |      | Qualfier |
|          |                                     | μg/Tube | μg/m³  | μg/m³ | ppbV   | ppbV |          |
| 64-19-7  | Acetic Acid                         | 16      | 170    | 11    | 67     | 4.4  |          |
| 79-09-4  | Propanoic Acid (Propionic)          | 1.4     | 14     | 2.7   | 4.8    | 0.88 |          |
| 79-31-2  | 2-Methylpropanoic Acid (Isobutyric) | 0.59    | 5.9    | 2.6   | 1.6    | 0.72 |          |
| 107-92-6 | Butanoic Acid (Butyric)             | 12      | 120    | 2.6   | 33     | 0.71 |          |
| 116-53-0 | 2-Methyl Butanoic Acid              | 1.8     | 18     | 2.5   | 4.3    | 0.61 |          |
| 503-74-2 | 3-Methyl Butanoic Acid (Isovaleric) | < 0.25  | ND     | 2.6   | ND     | 0.61 |          |
| 109-52-4 | Pentanoic Acid (Valeric)            | 3.7     | 37     | 2.5   | 9.0    | 0.60 |          |
| 97-61-0  | 2-Methylpentanoic Acid              | < 0.25  | ND     | 2.5   | ND     | 0.52 |          |
| 105-43-1 | 3-Methylpentanoic Acid              | < 0.25  | ND     | 2.5   | ND     | 0.53 |          |
| 646-07-1 | 4-Methylpentanoic Acid (Isocaproic) | < 0.25  | ND     | 2.5   | ND     | 0.52 |          |
| 142-62-1 | Hexanoic Acid (Caproic)             | 2.8     | 28     | 2.4   | 5.9    | 0.51 |          |
| 149-57-5 | 2-Ethylhexanoic Acid                | < 0.27  | ND     | 2.7   | ND     | 0.46 |          |
| 111-14-8 | Heptanoic Acid                      | 1.0     | 10     | 2.6   | 1.9    | 0.50 |          |
| 124-07-2 | Octanoic Acid (Caprylic)            | 1.4     | 14     | 2.5   | 2.4    | 0.42 |          |
| 98-89-5  | Cyclohexanecarboxylic Acid          | < 0.25  | ND     | 2.5   | ND     | 0.48 |          |
| 112-05-0 | Nonanoic Acid                       | 0.37    | 3.7    | 2.6   | 0.57   | 0.40 | c        |
| 65-85-0  | Benzoic Acid                        | < 0.30  | ND     | 3.0   | ND     | 0.61 |          |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

NA = Not applicable

BC = Results reported are not blank corrected

DE = Results reported are corrected for desorption efficiency.

Date: 4120106 Verified By:\_\_\_\_

#### **RESULTS OF ANALYSIS** Page 1 of 1

Client:

Weston Solutions of Michigan, Inc. Client Sample ID: Field Blank

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955

CAS Sample ID: P2600955-002B

Test Code:

GC/MS

Instrument ID:

HP5970/HP5890II+/MS4

Analyst: Sampling Media: Wade Henton

Test Notes:

Silica Gel Tube BC, DE

Date Collected: 4/13/06

Date Received: 4/14/06 Date Analyzed: 4/14/06

Desorption Volume:

1.0 ml NA Liters

Volume Sampled:

|          |                                     | Result  | Result | MRL   | Result | MRL  | Data     |
|----------|-------------------------------------|---------|--------|-------|--------|------|----------|
| CAS#     | Compound                            |         |        |       |        |      | Qualfier |
|          |                                     | μg/Tube | μg/m³  | μg/m³ | ppbV   | ppbV |          |
| 64-19-7  | Acetic Acid                         | < 1.1   | NA     | NA    | NA     | NA   |          |
| 79-09-4  | Propanoic Acid (Propionic)          | < 0.27  | NA     | NA    | NA     | NA   |          |
| 79-31-2  | 2-Methylpropanoic Acid (Isobutyric) | < 0.26  | ÑΑ     | NA    | NA     | NA   |          |
| 107-92-6 | Butanoic Acid (Butyric)             | < 0.26  | NA     | NA    | NA     | NA   |          |
| 116-53-0 | 2-Methyl Butanoic Acid              | < 0.25  | NA     | NA    | NA     | NA   |          |
| 503-74-2 | 3-Methyl Butanoic Acid (Isovaleric) | < 0.25  | NA     | NA    | NA     | NA   |          |
| 109-52-4 | Pentanoic Acid (Valeric)            | < 0.25  | NA     | NA    | NA     | NA   |          |
| 97-61-0  | 2-Methylpentanoic Acid              | < 0.25  | NA     | NA    | NA     | NA   |          |
| 105-43-1 | 3-Methylpentanoic Acid              | < 0.25  | NA     | NA    | NA     | NA   |          |
| 646-07-1 | 4-Methylpentanoic Acid (Isocaproic) | < 0.25  | NA     | NA    | NA     | NA   |          |
| 142-62-1 | Hexanoic Acid (Caproic)             | < 0.24  | NA     | NA    | NA     | NA   |          |
| 149-57-5 | 2-Ethylhexanoic Acid                | < 0.27  | NA     | NA    | NA     | NA   |          |
| 111-14-8 | Heptanoic Acid                      | < 0.26  | NA     | NA    | NA     | NA   |          |
| 124-07-2 | Octanoic Acid (Caprylic)            | < 0.25  | NA     | NA.   | NA     | NA   |          |
| 98-89-5  | Cyclohexanecarboxylic Acid          | < 0.25  | NA     | NA    | NA     | NA   |          |
| 112-05-0 | Nonanoic Acid                       | < 0.26  | NA     | NA    | NA     | NA   |          |
| 65-85-0  | Benzoic Acid                        | < 0.30  | NA     | NA    | NA     | NA   |          |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

NA = Not applicable

BC = Results reported are not blank corrected

DE = Results reported are corrected for desorption efficiency.

Verified By: Rc Date: 4120100

# RESULTS OF ANALYSIS Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID:

**Method Blank** 

Client Project ID:

WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955

CAS Sample ID: P060414-MB

Test Code:

GC/MS

Instrument ID:

HP5970/HP5890II+/MS4

Analyst:

Wade Henton

Sampling Media:

Silica Gel Tube

Test Notes:

BC, DE

Date Collected: NA

Date Received: NA

Date Analyzed: 4/14/06

1.0 ml

Volume Sampled:

Desorption Volume:

NA Liters

|          |                                     | Result  | Result | MRL   | Result | MRL  | Data     |
|----------|-------------------------------------|---------|--------|-------|--------|------|----------|
| CAS#     | Compound                            |         |        |       |        |      | Qualfier |
| ·        |                                     | μg/Tube | μg/m³  | μg/m³ | ppbV   | ppbV |          |
| 64-19-7  | Acetic Acid                         | < 1.1   | NA     | NA    | NA     | NA   | ·        |
| 79-09-4  | Propanoic Acid (Propionic)          | < 0.27  | NA     | NA    | NA     | NA   |          |
| 79-31-2  | 2-Methylpropanoic Acid (Isobutyric) | < 0.26  | NA     | NA    | NA     | NA   |          |
| 107-92-6 | Butanoic Acid (Butyric)             | < 0.26  | NA ·   | NA    | NA     | NA   |          |
| 116-53-0 | 2-Methyl Butanoic Acid              | < 0.25  | NA     | NA    | NA     | NA   |          |
| 503-74-2 | 3-Methyl Butanoic Acid (Isovaleric) | < 0.25  | NA     | NA    | NA     | NA   |          |
| 109-52-4 | Pentanoic Acid (Valeric)            | < 0.25  | NA     | NA    | NA     | NA   |          |
| 97-61-0  | 2-Methylpentanoic Ácid              | < 0.25  | NA     | NA    | . NA   | NA   |          |
| 105-43-1 | 3-Methylpentanoic Acid              | < 0.25  | NA     | NA    | NA     | NA   |          |
| 646-07-1 | 4-Methylpentanoic Acid (Isocaproic) | < 0.25  | NA     | NA    | NA     | NA   |          |
| 142-62-1 | Hexanoic Acid (Caproic)             | < 0.24  | NA     | NA    | NA     | NA   |          |
| 149-57-5 | 2-Ethylhexanoic Acid                | < 0.27  | NA     | NA    | NA     | NA   |          |
| 111-14-8 | Heptanoic Acid                      | < 0.26  | NA     | NA    | NA     | NA   |          |
| 124-07-2 | Octanoic Acid (Caprylic)            | < 0.25  | NA     | NA    | NA     | NA   |          |
| 98-89-5  | Cyclohexanecarboxylic Acid          | < 0.25  | NA     | NA    | NA     | NA   |          |
| 112-05-0 | Nonanoic Acid                       | < 0.26  | NA     | NA    | NA     | NA   |          |
| 65-85-0  | Benzoic Acid                        | < 0.30  | NA     | NA    | NA     | NA   |          |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

NA = Not applicable

BC = Results reported are not blank corrected

DE = Results reported are corrected for desorption efficiency.

Verified By: Rc Date: 4/20/06

# RESULTS OF ANALYSIS Page 1 of 1

Client: Weston Solutions of Michigan, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955 CAS Sample ID: P060414-LCS

# **Laboratory Control Sample Summary**

Test Code: Instrument ID: GC/MS

HP5970/HP5890II+/MS4

Analyst:

Wade Henton

Sampling Media: Silica Gel Tube

Test Notes:

Date Collected: NA

Date Received: NA

Date Analyzed: 4/14/06

Volume(s) Analyzed: NA

| Compound                            | Spike Amount<br>LCS<br>μg/ml | Result<br>LCS | % Recovery<br>LCS | CAS Acceptance Limits | Data<br>Qualifier |
|-------------------------------------|------------------------------|---------------|-------------------|-----------------------|-------------------|
| Acetic Acid                         | 26.6                         | 28.9          | 109               | 70-130                |                   |
| Propanoic Acid (Propionic)          | 10.9                         | 11.8          | 108               | 70-130                |                   |
| 2-Methylpropanoic Acid (Isobutyric) | 12.7                         | 13.3          | 105               | 70-130                |                   |
| Butanoic Acid (Butyric)             | 12.5                         | 12.9          | 103               | 70-130                |                   |
| 2-Methyl Butanoic Acid              | 12.4                         | 12.9          | 104               | 70-130                |                   |
| 3-Methyl Butanoic Acid (Isovaleric) | 12.1                         | 12.4          | 103               | 70-130                |                   |
| Pentanoic Acid (Valeric)            | 11.9                         | 12.3          | 104               | 70-130                |                   |
| 2-Methylpentanoic Acid              | 12.3                         | 12.3          | 100               | 70-130                |                   |
| 3-Methylpentanoic Acid              | 12.2                         | 12.3          | 101               | 70-130                |                   |
| 4-Methylpentanoic Acid (Isocaproic) | 12.0                         | 12.1          | 100               | 70-130                |                   |
| Hexanoic Acid (Caproic)             | 12.8                         | 12.7          | 99                | 70-130                |                   |
| 2-Ethylhexanoic Acid                | 13.3                         | 12.0          | 90                | 70-130                |                   |
| Heptanoic Acid                      | 13.1                         | 12.6          | 96                | 70-130                |                   |
| Octanoic Acid (Caprylic)            | 13.2                         | 12.8          | 97                | 70-130                |                   |
| Cyclohexanecarboxylic Acid          | 12.6                         | 12.4          | 98                | 70-130                |                   |
| Nonanoic Acid                       | 13.2                         | 12.5          | 95                | 70-130                |                   |
| Benzoic Acid                        | · 13.1                       | 10.8          | 82                | 70-130                |                   |

Verified By: Ru Date: 4/20/06

# RESULTS OF ANALYSIS

Page 1 of 3

Client: Weston Solutions of Michigan, Inc.

Client Sample ID: W-1 CAS Project ID: P2600955

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00 CAS Sample ID: P2600955-001

Test Code:

EPA TO-15

Date Collected: 4/13/06

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Date Received: 4/14/06

Analyst: Sampling Media: Rusty Bravo

Date(s) Analyzed: 4/14/06

Test Notes:

Silco Canister

Volume(s) Analyzed: 0.080 Liter(s) 0.0025 Liter(s)

Container ID:

SL00084

Pi 1 = -1.0 Pf 1 = 3.5

Can D.F. = 1.33

| CAS#      | Compound                                             | Result<br>μg/m³ | MRL<br>μg/m³ | Result<br>ppbV | MRL<br>ppbV | Data<br>Qualifier |
|-----------|------------------------------------------------------|-----------------|--------------|----------------|-------------|-------------------|
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | ND              | 1:7          | ND             | 3.4         |                   |
| 74-87-3   | Chloromethane                                        | ND              | 17           | ND             | 8.1         |                   |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND              | 17           | ND             | 2.4         |                   |
| 75-01-4   | Vinyl Chloride                                       | ND              | 17           | ND             | 6.5         |                   |
| 106-99-0  | 1,3-Butadiene                                        | ND              | 17           | ND             | 7.5         |                   |
| 74-83-9   | Bromomethane                                         | ND              | 17           | ND             | 4.3         | -                 |
| 75-00-3   | Chloroethane                                         | ND              | 17           | ND             | 6.3         |                   |
| 64-17-5   | Ethanol                                              | 29,000          | 83           | 15,000         | 44          |                   |
| 75-05-8   | Acetonitrile                                         | ND              | 17           | ND             | 9.9         |                   |
| 107-02-8  | Acrolein                                             | ND              | 17           | ND             | 7.3         |                   |
| 67-64-1   | Acetone                                              | ND              | 83           | ND             | 35          |                   |
| 75-69-4   | Trichlorofluoromethane                               | ND              | 17           | ND             | 3.0         |                   |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | ND              | 17           | ND             | 6.8         |                   |
| 107-13-1  | Acrylonitrile                                        | ND              | 17           | ND             | 7.7         |                   |
| 75-35-4   | 1,1-Dichloroethene                                   | ND              | 17           | ND             | 4.2         |                   |
| 75-09-2   | Methylene chloride                                   | ND              | 17           | ND             | 4.8         |                   |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND              | 17           | ND             | 5.3         |                   |
| 76-13-1   | Trichlorotrifluoroethane                             | ND              | 17           | ND             | 2.2         |                   |
| 75-15-0   | Carbon Disulfide                                     | ND              | 17           | ND             | 5.3         |                   |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND              | 17           | ND             | 4.2         |                   |
| 75-34-3   | 1,1-Dichloroethane                                   | ND              | 17           | ND             | 4.1         |                   |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND              | 17           | ND             | 4.6         |                   |
| 108-05-4  | Vinyl Acetate                                        | ND              | 17           | ND             | 4.7         |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Rt. Date: 417106

#### **RESULTS OF ANALYSIS** Page 2 of 3

**Client:** 

Weston Solutions of Michigan, Inc.

Client Sample ID: W-1

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955

Date Collected: 4/13/06

Date Received: 4/14/06

Date(s) Analyzed: 4/14/06

CAS Sample ID: P2600955-001

Test Code:

EPA TO-15

Tekmar AUTOCAN/HP5973/HP6890/MS3

Instrument ID: Analyst:

Rusty Bravo

Sampling Media: Test Notes:

Container ID:

Silco Canister

SL00084

Pi 1 =

-1.0

Pf 1 = 3.5

Volume(s) Analyzed:

Can D.F. = 1.33

0.080 Liter(s)

0.0025 Liter(s)

| CAS#       | Compound                  | Result<br>μg/m³ | MRL<br>μg/m³ | Result<br>ppbV | MRL<br>ppbV | Data<br>Qualifier |
|------------|---------------------------|-----------------|--------------|----------------|-------------|-------------------|
| 78-93-3    | 2-Butanone (MEK)          | ND              | 17           | ND             | 5.6         |                   |
| 156-59-2   | cis-1,2-Dichloroethene    | ND              | 17           | ND             | 4.2         |                   |
| 110-54-3   | n-Hexane                  | 24              | 17           | 6.7            | 4.7         |                   |
| 67-66-3    | Chloroform                | ND              | 17           | ND             | 3.4         |                   |
| 107-06-2   | 1,2-Dichloroethane        | ND              | 17           | ND             | 4.1         |                   |
| 71-55-6    | 1,1,1-Trichloroethane     | ND              | 17           | ND             | 3.0         |                   |
| 71-43-2    | Benzene                   | ND              | 17           | ND             | 5.2         |                   |
| 56-23-5    | Carbon Tetrachloride      | ND              | 17           | ND             | 2.6         |                   |
| 78-87-5    | 1,2-Dichloropropane       | ND              | 17           | ND             | 3.6         |                   |
| 75-27-4    | Bromodichloromethane      | ND              | 17           | ND             | 2.5         |                   |
| 79-01-6    | Trichloroethene           | ND              | 17           | ND             | 3.1         |                   |
| 123-91-1   | 1,4-Dioxane               | ND              | 17           | ND             | 4.6         |                   |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND              | 17           | ND             | 3.7         |                   |
| 108-10-1   | 4-Methyl-2-pentanone      | ND              | 17           | ND             | 4.1         |                   |
| 10061-02-6 | trans-1,3-Dichloropropene | ND              | 17           | ND             | 3.7         |                   |
| 79-00-5    | 1,1,2-Trichloroethane     | · ND            | 17           | ND             | 3.0         |                   |
| 108-88-3   | Toluene                   | 75              | 17           | 20             | 4.4         |                   |
| 591-78-6   | 2-Hexanone                | ND              | 17           | ND             | 4.1         |                   |
| 124-48-1   | Dibromochloromethane      | ND              | 17           | ND             | 2.0         |                   |
| 106-93-4   | 1,2-Dibromoethane         | ND              | 17           | ND             | 2.2         |                   |
| 123-86-4   | n-Butyl Acetate           | ND              | 17           | ND             | 3.5         |                   |
| 127-18-4   | Tetrachloroethene         | ND              | 17           | ND             | 2.5         |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

| Verified By: | Ru | Date: 417106 |
|--------------|----|--------------|
|              |    | rage 140     |

# RESULTS OF ANALYSIS Page 3 of 3

Client: Weston Solutions of Michigan, Inc.

Client Sample ID: W-1 CAS Project ID: P2600955

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00 CAS Sample ID: P2600955-001

Test Code: EPA TO-15

EPA TO-15 Date Collected: 4/13/06
Tekmar AUTOCAN/HP5973/HP6890/MS3 Date Received: 4/14/06

Instrument ID: Tekmar AUTOCAN/HP5973/HP6890/MS3 Date Received: 4/14/06
Analyst: Rusty Bravo Date(s) Analyzed: 4/14/06

Sampling Media: Silco Canister Volume(s) Analyzed: 0.080 Liter(s)

Test Notes: 0.0025 Liter(s)

Container ID: SL00084

Pi 1 = -1.0 Pf 1 = 3.5 Can D.F. = 1.33

| CAS#        | Compound                    | Result<br>µg/m³ | MRL<br>μg/m³ | Result<br>ppbV | MRL<br>ppbV | Data<br>Qualifier |
|-------------|-----------------------------|-----------------|--------------|----------------|-------------|-------------------|
| 108-90-7    | Chlorobenzene               | ND              | 17           | ND             | 3.6         |                   |
| 100-41-4    | Ethylbenzene                | 20              | 17           | 4.6            | 3.8         |                   |
| 179601-23-1 | m,p-Xylenes                 | 68              | 17           | 16             | 3.8         |                   |
| 75-25-2     | Bromoform                   | ND              | 17           | ND             | 1.6         |                   |
| 100-42-5    | Styrene                     | ND              | 17           | ND             | 3.9         |                   |
| 95-47-6     | o-Xylene                    | 23              | 17           | 5.2            | 3.8         |                   |
| 111-84-2    | n-Nonane                    | 61              | 17           | 12             | 3.2         |                   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND              | 17           | ND             | 2.4         | <u> </u>          |
| 98-82-8     | Cumene                      | ND              | 17           | ND             | 3.4         |                   |
| 80-56-8     | alpha-Pinene                | ND              | 17           | ND             | 3.0         |                   |
| 622-96-8    | 4-Ethyltoluene              | ND              | 17           | ND             | 3.4         |                   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND              | 17           | ND             | 3.4         |                   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 20              | • 17         | 4.0            | 3.4         |                   |
| 100-44-7    | Benzyl Chloride             | ND              | 17           | ND             | 3.2         |                   |
| 541-73-1    | 1,3-Dichlorobenzene         | ND              | 17           | ND             | 2.8         |                   |
| 106-46-7    | 1,4-Dichlorobenzene         | ND              | 17           | ND             | 2.8         |                   |
| 95-50-1     | 1,2-Dichlorobenzene         | ND              | 17           | ND             | 2.8         |                   |
| 5989-27-5   | d-Limonene                  | 810             | 17           | 150            | 3.0         |                   |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND              | 17           | ND             | 1.7         |                   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND              | 17           | ND             | 2.2         |                   |
| 91-20-3     | Naphthalene                 | ND              | 17           | ND             | 3.2         |                   |
| 87-68-3     | Hexachlorobutadiene         | ND              | 17           | ND             | 1.6         |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

rerified By: Rc. Date: 417106

00955VOA.RDI - Sample

#### **RESULTS OF ANALYSIS**

Page 1 of 3

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Method Blank

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955

CAS Sample ID: P060414-MB

Test Code:

**EPA TO-15** 

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Analyst:

**Rusty Bravo** 

Sampling Media:

Silco Canister

Test Notes:

Date Collected: NA Date Received: NA

Date(s) Analyzed: 4/14/06 Volume(s) Analyzed:

1.00 Liter(s)

D.F. = 1.00

| CAS#      | Compound                            | Result<br>μg/m³ | MRL<br>μg/m³ | Result<br>ppbV | MRL<br>ppbV | Data<br>Qualifier |
|-----------|-------------------------------------|-----------------|--------------|----------------|-------------|-------------------|
| 75-71-8   | Dichlorodifluoromethane (CFC 12)    | ND              | 1.0          | ND             | 0.20        |                   |
| 74-87-3   | Chloromethane                       | ND              | 1.0          | ND             | 0.48        |                   |
|           | 1,2-Dichloro-1,1,2,2-               |                 |              |                |             | _                 |
| 76-14-2   | tetrafluoroethane (CFC 114)         | ND              | 1.0          | ND             | 0.14        |                   |
| 75-01-4   | Vinyl Chloride                      | ND              | 1.0          | ND             | 0.39        |                   |
| 106-99-0  | 1,3-Butadiene                       | ND              | 1.0          | ND             | 0.45        |                   |
| 74-83-9   | Bromomethane                        | ND              | 1.0          | ND             | 0.26        |                   |
| 75-00-3   | Chloroethane                        | ND              | 1.0          | ND             | 0.38        |                   |
| 64-17-5   | Ethanol                             | ND              | 5.0          | ND             | 2.7         |                   |
| 75-05-8   | Acetonitrile                        | ND              | 1.0          | ND             | 0.60        |                   |
| 107-02-8  | Acrolein                            | ND              | 1.0          | ND             | 0.44        |                   |
| 67-64-1   | Acetone                             | ND              | 5.0          | ND             | 2.1         |                   |
| 75-69-4   | Trichlorofluoromethane              | ND              | 1.0          | ND             | 0.18        |                   |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)      | ND              | 1.0          | ND             | 0.41        |                   |
| 107-13-1  | Acrylonitrile                       | ND              | 1.0          | ND             | 0.46        |                   |
| 75-35-4   | 1,1-Dichloroethene                  | ND              | 1.0          | ND             | 0.25        |                   |
| 75-09-2   | Methylene chloride                  | ND              | 1.0          | ND             | 0.29        |                   |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride) | ND              | 1.0          | . ND           | 0.32        |                   |
| 76-13-1   | Trichlorotrifluoroethane            | ND              | 1.0          | ND             | 0.13        |                   |
| 75-15-0   | Carbon Disulfide                    | ND              | 1.0          | ND             | 0.32        |                   |
| 156-60-5  | trans-1,2-Dichloroethene            | ND              | 1.0          | ND             | 0.25        |                   |
| 75-34-3   | 1,1-Dichloroethane                  | ND              | 1.0          | ND             | 0.25        |                   |
| 1634-04-4 | Methyl tert-Butyl Ether             | ND              | 1.0          | ND             | 0.28        |                   |
| 108-05-4  | Vinyl Acetate                       | ND              | 1.0          | ND             | 0.28        |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

# RESULTS OF ANALYSIS Page 2 of 3

Client: Weston Solutions of Michigan, Inc.

Client Sample ID: Method Blank CAS Project ID: P2600955
Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.0574.00 CAS Sample ID: P060414-MB

Test Code:

**EPA TO-15** 

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Analyst:

Rusty Bravo

Sampling Media:

Silco Canister

Test Notes:

Date Collected: NA
Date Received: NA

Date(s) Analyzed: 4/14/06

Volume(s) Analyzed:

1.00 Liter(s)

D.F. = 1.00

| CAS #      | Compound                  | Result<br>μg/m³ | MRL<br>μg/m³ | Result<br>ppbV | MRL<br>ppbV | Data<br>Qualifier |
|------------|---------------------------|-----------------|--------------|----------------|-------------|-------------------|
| 78-93-3    | 2-Butanone (MEK)          | ND              | 1.0          | ND             | 0.34        |                   |
| 156-59-2   | cis-1,2-Dichloroethene    | ND              | 1.0          | ND             | 0.25        |                   |
| 110-54-3   | n-Hexane                  | ND              | 1.0          | ND             | 0.28        |                   |
| 67-66-3    | Chloroform                | ND              | 1.0          | ND             | 0.20        |                   |
| 107-06-2   | 1,2-Dichloroethane        | ND              | 1.0          | ND             | 0.25        |                   |
| 71-55-6    | 1,1,1-Trichloroethane     | ND              | 1.0          | ND             | 0.18        |                   |
| 71-43-2    | Benzene                   | ND              | 1.0          | ND             | 0.31        |                   |
| 56-23-5    | Carbon Tetrachloride      | ND              | 1.0          | ND             | 0.16        |                   |
| 78-87-5    | 1,2-Dichloropropane       | ND              | 1.0          | ND             | 0.22        |                   |
| 75-27-4    | Bromodichloromethane      | ND              | 1.0          | ND             | 0.15        |                   |
| 79-01-6    | Trichloroethene           | ND              | 1.0          | _ ND           | 0.19        |                   |
| 123-91-1   | 1,4-Dioxane               | ND              | 1.0          | ND             | 0.28        |                   |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND              | 1.0          | ND             | 0.22        |                   |
| 108-10-1   | 4-Methyl-2-pentanone      | ND              | 1.0          | ND             | 0.24        |                   |
| 10061-02-6 | trans-1,3-Dichloropropene | . ND            | 1.0          | ND             | 0.22        |                   |
| 79-00-5    | 1,1,2-Trichloroethane     | ND              | 1.0          | ND             | 0.18        |                   |
| 108-88-3   | Toluene                   | ND              | 1.0          | ND             | 0.27        |                   |
| 591-78-6   | 2-Hexanone                | ND              | 1.0          | ND             | 0.24        |                   |
| 124-48-1   | Dibromochloromethane      | ND              | 1.0          | ND             | 0.12        |                   |
| 106-93-4   | 1,2-Dibromoethane         | ND              | 1.0          | ND             | 0.13        |                   |
| 123-86-4   | n-Butyl Acetate           | ND              | 1.0          | ND             | 0.21        |                   |
| 127-18-4   | Tetrachloroethene         | ND              | 1.0          | ND             | 0.15        |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Rc Date: 4/17/06

**RESULTS OF ANALYSIS** Page 3 of 3

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Method Blank

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955

CAS Sample ID: P060414-MB

Test Code:

**EPA TO-15** 

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Analyst:

**Rusty Bravo** 

Sampling Media:

Silco Canister

Date Collected: NA Date Received: NA

Date(s) Analyzed: 4/14/06

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

D.F. = 1.00

| CAS#        | Compound                    | Result<br>µg/m³ | MRL<br>μg/m³ | Result<br>ppbV | MRL<br>ppbV | Data<br>Qualifier |
|-------------|-----------------------------|-----------------|--------------|----------------|-------------|-------------------|
| 108-90-7    | Chlorobenzene               | ND              | 1.0          | ND             | 0.22        |                   |
| 100-41-4    | Ethylbenzene                | ND              | 1.0          | ND             | 0.23        |                   |
| 179601-23-1 | m,p-Xylenes                 | ND              | 1.0          | ND             | 0.23        |                   |
| 75-25-2     | Bromoform                   | ND              | 1.0          | ND             | 0.097       |                   |
| 100-42-5    | Styrene                     | ND              | 1.0          | ND             | 0.23        |                   |
| 95-47-6     | o-Xylene                    | ND              | 1.0          | ND             | 0.23        |                   |
| 111-84-2    | n-Nonane                    | ND              | 1.0          | ND             | 0.19        |                   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND              | 1.0          | ND             | 0.15        |                   |
| 98-82-8     | Cumene                      | ND              | 1.0          | ND             | 0.20        |                   |
| 80-56-8     | alpha-Pinene                | ND              | 1.0          | ND             | 0.18        |                   |
| 622-96-8    | 4-Ethyltoluene              | ND              | 1.0          | ND             | 0.20        |                   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND              | 1.0          | ND             | 0.20        |                   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND              | 1.0          | ND             | 0.20        |                   |
| 100-44-7    | Benzyl Chloride             | ND              | 1.0          | ND             | 0.19        |                   |
| 541-73-1    | 1,3-Dichlorobenzene         | ND              | 1.0          | ND             | 0.17        |                   |
| 106-46-7    | 1,4-Dichlorobenzene         | ND              | 1.0          | ND             | 0.17        |                   |
| 95-50-1     | 1,2-Dichlorobenzene         | ND              | 1.0          | ND             | 0.17        |                   |
| 5989-27-5   | d-Limonene                  | ND              | 1.0          | ND             | 0.18        |                   |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND              | 1.0          | ND             | 0.10        |                   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND              | 1.0          | ND             | 0.13        |                   |
| 91-20-3     | Naphthalene                 | ND              | 1.0          | ND             | 0.19        |                   |
| 87-68-3     | Hexachlorobutadiene         | ND              | 1.0          | ND             | 0.094       |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:

# **RESULTS OF ANALYSIS** Page 1 of 1

Client:

Weston Solutions of Michigan, Inc.

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955

#### **Surrogate Spike Recovery Results**

Test Code:

**EPA TO-15** 

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Rusty Bravo

Sampling Media:

Silco Canister(s)

Date Collected: 4/13/06

Date Received: 4/14/06

Date Analyzed: 4/14/06

Test Notes:

Analyst:

|                    |               | 1,2-Dichloroethane-d4 |            | Tolue     | ne-d8      | Bromofluo | Data       |           |
|--------------------|---------------|-----------------------|------------|-----------|------------|-----------|------------|-----------|
| Client Sample ID   | CAS Sample ID | %                     | Acceptance | %         | Acceptance | %         | Acceptance | Qualifier |
|                    |               | Recovered             | Limits     | Recovered | Limits     | Recovered | Limits     |           |
| Method Blank       | P060414-MB    | 107                   | 70-140     | 95        | 70-140     | 98        | 70-140     |           |
| Lab Control Sample | P060414-LCS   | 122                   | 70-140     | 95        | 70-140     | 98        | 70-140     |           |
| W-1                | P2600955-001  | 120                   | 70-140     | 94        | 70-140     | 100       | 70-140     |           |

#### **RESULTS OF ANALYSIS** Page 1 of 3

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955

CAS Sample ID: P060414-LCS

# Laboratory Control Sample (LCS) Summary

Test Code:

**EPA TO-15** 

Date Collected:

NA

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Date Received:

NA

Analyst:

Rusty Bravo Silco Canister

Date Analyzed: Volume(s) Analyzed: 4/14/06 NA Liter

Sampling Media: Test Notes:

| CAS#      | Compound                                             | Amount<br>Spiked<br>ng | Amount<br>Recovered<br>ng | %<br>Recovery | CAS Acceptance Limits | Data<br>Qualifier |
|-----------|------------------------------------------------------|------------------------|---------------------------|---------------|-----------------------|-------------------|
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | 25.8                   | 28.9                      | 112           | 68-124                |                   |
| 74-87-3   | Chloromethane                                        | 25.3                   | 23.0                      | 91            | 65-120                |                   |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | 26.3                   | 18.7                      | 71            | 47-130                |                   |
| 75-01-4   | Vinyl Chloride                                       | 25.8                   | 24.4                      | 95            | 67-127                |                   |
| 106-99-0  | 1,3-Butadiene                                        | 27.0                   | 22.1                      | 82            | 65-118                |                   |
| 74-83-9   | Bromomethane                                         | 25.8                   | 25.8                      | 100           | 65-134                |                   |
| 75-00-3   | Chloroethane                                         | 26.0                   | 23.7                      | 91            | 71-121                |                   |
| 64-17-5   | Ethanol                                              | 24.0                   | 23.7                      | 99            | 66-133                |                   |
| 75-05-8   | Acetonitrile                                         | 23.8                   | 22.5                      | 95            | 64-124                |                   |
| 107-02-8  | Acrolein                                             | 23.5                   | 19.5                      | 83            | 61-121                |                   |
| 67-64-1   | Acetone                                              | 27.3                   | 23.6                      | 87            | 62-113                |                   |
| 75-69-4   | Trichlorofluoromethane                               | 24.3                   | 27.3                      | 113           | 68-130                |                   |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | 24.8                   | 23.2                      | 94            | 72-119                |                   |
| 107-13-1  | Acrylonitrile                                        | 24.5                   | 23.1                      | 94            | 71-129                |                   |
| 75-35-4   | 1,1-Dichloroethene                                   | 27.5                   | 26.6                      | 97            | 74-126                |                   |
| 75-09-2   | Methylene chloride                                   | 27.3                   | 25.1                      | 92            | 68-120                |                   |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | 25.5                   | 19.8                      | 78            | 61-128                |                   |
| 76-13-1   | Trichlorotrifluoroethane                             | 27.5                   | 28.7                      | 104           | 68-127                |                   |
| 75-15-0   | Carbon Disulfide                                     | 25.0                   | 24.9                      | 100           | 69-126                |                   |
| 156-60-5  | trans-1,2-Dichloroethene                             | 26.8                   | 27.6                      | 103           | 76-124                |                   |
| 75-34-3   | 1,1-Dichloroethane                                   | 27.3                   | 24.9                      | 91            | 75-120                |                   |
| 1634-04-4 | Methyl tert-Butyl Ether                              | 27.0                   | 28.8                      | 107           | 68-123                |                   |
| 108-05-4  | Vinyl Acetate                                        | 25.8                   | 23.7                      | 92            | 56-139                |                   |

Verified By:

#### **RESULTS OF ANALYSIS** Page 2 of 3

Client:

Weston Solutions of Michigan, Inc.

Tekmar AUTOCAN/HP5973/HP6890/MS3

Client Sample ID: Lab Control Sample

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955

CAS Sample ID: P060414-LCS

# Laboratory Control Sample (LCS) Summary

Test Code:

**EPA TO-15** 

Date Collected:

NA

Instrument ID:

Date Received: Date Analyzed:

NA 4/14/06

Analyst:

Rusty Bravo Silco Canister

Volume(s) Analyzed:

NA Liter

Sampling Media: Test Notes:

| CAS#       | Compound                  | Amount<br>Spiked<br>ng | Amount<br>Recovered<br>ng | %<br>Recovery | CAS Acceptance Limits | Data<br>Qualifier |
|------------|---------------------------|------------------------|---------------------------|---------------|-----------------------|-------------------|
| 78-93-3    | 2-Butanone (MEK)          | 27.3                   | 26.4                      | 97            | 74-126                |                   |
| 156-59-2   | cis-1,2-Dichloroethene    | 27.3                   | 28.1                      | 103           | 77-122                |                   |
| 110-54-3   | n-Hexane                  | 27.3                   | 25.1                      | 92            | 72-119                |                   |
| 67-66-3    | Chloroform                | 28.5                   | 30.6                      | 107           | 75-119                |                   |
| 107-06-2   | 1,2-Dichloroethane        | 26.8                   | 32.0                      | 120           | 74-125                |                   |
| 71-55-6    | 1,1,1-Trichloroethane     | 27.0                   | 33.2                      | 123           | 75-129                |                   |
| 71-43-2    | Benzene                   | 27.0                   | 24.9                      | 92            | 69-118                |                   |
| 56-23-5    | Carbon Tetrachloride      | 26.5                   | 34.1                      | 129           | 72-139                |                   |
| 78-87-5    | 1,2-Dichloropropane       | 26.8                   | 25.3                      | 95            | 75-122                |                   |
| 75-27-4    | Bromodichloromethane      | 28.3                   | 33.1                      | 117           | 79-125                |                   |
| 79-01-6    | Trichloroethene           | 28.3                   | 28.7                      | 102           | 74-123                |                   |
| 123-91-1   | 1,4-Dioxane               | 28.3                   | 28.7                      | 102           | 80-128                |                   |
| 10061-01-5 | cis-1,3-Dichloropropene   | 25.8                   | 26.6                      | 103           | 81-126                |                   |
| 108-10-1   | 4-Methyl-2-pentanone      | 27.3                   | 27.4                      | 101           | 78-132                |                   |
| 10061-02-6 | trans-1,3-Dichloropropene | 28.8                   | 31.4                      | 109           | 80-130                |                   |
| 79-00-5    | 1,1,2-Trichloroethane     | 26.5                   | 26.2                      | 99            | 76-123                |                   |
| 108-88-3   | Toluene                   | 26.8                   | 25.1                      | 94            | 74-124                |                   |
| 591-78-6   | 2-Hexanone                | 27.0                   | 27.8                      | 103           | 77-140                |                   |
| 124-48-1   | Dibromochloromethane      | 27.0                   | 31.1                      | 115           | 81-139                |                   |
| 106-93-4   | 1,2-Dibromoethane         | 26.5                   | 26.7                      | 101           | 77-133                |                   |
| 123-86-4   | n-Butyl Acetate           | 25.8                   | 25.0                      | 97            | 71-146                |                   |
| 127-18-4   | Tetrachloroethene         | 26.5                   | 25.9                      | 98            | 71-135                |                   |

| Verified By: | Ru | Date: | 4/12/06/24 |
|--------------|----|-------|------------|
|              |    |       | Page No.:  |

# **RESULTS OF ANALYSIS** Page 3 of 3

Client:

Weston Solutions of Michigan, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: WRS/TDD# 505-0512-001 / Task # 12634.001.001.0574.00

CAS Project ID: P2600955

CAS Sample ID: P060414-LCS

# Laboratory Control Sample (LCS) Summary

Test Code:

EPA TO-15

Date Collected:

NA

Instrument ID:

Tekmar AUTOCAN/HP5973/HP6890/MS3

Date Received:

NA 4/14/06

Analyst:

Rusty Bravo

Date Analyzed: Volume(s) Analyzed:

NA Liter

Sampling Media:

Silco Canister

Test Notes:

| CAS#        | Compound                    | Amount<br>Spiked | Amount<br>Recovered | %        | CAS<br>Acceptance | Data      |
|-------------|-----------------------------|------------------|---------------------|----------|-------------------|-----------|
| 108-90-7    | Chlorobenzene               | ng               | ng<br>25.6          | Recovery | Limits 76-126     | Qualifier |
|             |                             | 26.8             | 25.6                | 96       |                   | <u> </u>  |
| 100-41-4    | Ethylbenzene                | 26.5             | 26.2                | 99       | 77-127            |           |
| 179601-23-1 | m,p-Xylenes                 | 58.0             | 59.3                | 102      | 77-128            |           |
| 75-25-2     | Bromoform                   | 29.5             | 32.6                | 111      | 77-143            |           |
| 100-42-5    | Styrene                     | 26.5             | 26.1                | 98       | 71-139            |           |
| 95-47-6     | o-Xylene                    | 28.3             | 28.6                | 101      | 76-128            |           |
| 111-84-2    | n-Nonane                    | 26.3             | 24.9                | 95       | 73-131            |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 28.3             | 26.8                | 95       | 79-130            |           |
| 98-82-8     | Cumene                      | 27.3             | 27.8                | 102      | 77-128            |           |
| 80-56-8     | alpha-Pinene                | 26.3             | 25.7                | 98       | 66-140            |           |
| 622-96-8    | 4-Ethyltoluene              | 27.3             | 27.9                | 102      | 74-132            |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 26.5             | 27.1                | 102      | 72-134            |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 26.8             | 28.4                | 106      | 74-134            |           |
| 100-44-7    | Benzyl Chloride             | 26.5             | 29.6                | 112      | 72-174            |           |
| 541-73-1    | 1,3-Dichlorobenzene         | 26.3             | 26.1                | 99       | 73-137            |           |
| 106-46-7    | 1,4-Dichlorobenzene         | 27.0             | 26.8                | 99       | 71-136            |           |
| 95-50-1     | 1,2-Dichlorobenzene         | 26.8             | 26.4                | 99       | 70-140            |           |
| 5989-27-5   | d-Limonene                  | 26.0             | 24.0                | 92       | 20-202            |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | 25.8             | 26.9                | 104      | 77-157            |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 28.3             | 28.2                | 100      | 68-154            |           |
| 91-20-3     | Naphthalene                 | 25.8             | 26.1                | 101      | 63-160            |           |
| 87-68-3     | Hexachlorobutadiene         | 27.5             | 28.0                | 102      | 61-147            |           |

# Columbia Analytical Services, Inc. Sample Acceptance Check Form

|                    |                                  | Sam                         | ple Acceptance Check               | Form                                |                       |                       |           |              |
|--------------------|----------------------------------|-----------------------------|------------------------------------|-------------------------------------|-----------------------|-----------------------|-----------|--------------|
|                    | : Weston Solutions of N          |                             |                                    | Work order:                         | P2600955              |                       |           |              |
| Project            | : WRS/TDD# 505-0512              | 2-001 / Task # 12634        | .001.001.0574.00                   |                                     |                       |                       |           |              |
|                    | Sample(s) received on:           | 4/14/06                     | Date opened:                       | 4/14/06                             | by:                   | MZ                    |           | and the same |
| Vote: This         | form is used for all samples rec | eived by CAS. The use of t  | his form for custody seals is stri | ctly meant to indicate p            | resence/absence a     | nd not as an          | indicatio | on of        |
| compliance         | e or nonconformity. Thermal pro  | eservation and pH will only | be evaluated either at the reque   | st of the client or as req          | uired by the meth     | od/SOP.               |           | S 22 2 3     |
|                    |                                  |                             |                                    |                                     |                       | <u>Yes</u>            | No        | N/A          |
| 1                  | Were custody seals on o          | outside of cooler/Box?      |                                    |                                     |                       |                       | X         |              |
|                    | Location of seal(s)?             |                             |                                    |                                     | Sealing Lid?          |                       |           | X            |
|                    | Were signature and da            | te included?                |                                    |                                     |                       |                       |           | X            |
|                    | Were seals intact?               |                             |                                    |                                     |                       |                       |           | ×            |
|                    | Were custody seals on or         | utside of sample contain    | ner?                               |                                     |                       |                       | X         |              |
|                    | Location of seal(s)?             |                             |                                    |                                     | Sealing Lid?          |                       |           | X            |
|                    | Were signature and da            | te included?                |                                    |                                     |                       |                       |           | X            |
|                    | Were seals intact?               |                             |                                    |                                     |                       |                       |           | ×            |
| 2                  | Were sample containers           | s properly marked with      | client sample ID?                  |                                     |                       | $\times$              |           |              |
| 3                  | Did sample containers            | arrive in good conditio     | n?                                 |                                     |                       | $\times$              |           |              |
| 4                  | Were chain-of-custody            | papers used and filled      | out?                               |                                     |                       | X                     |           |              |
| 5                  | Did sample container la          | abels and/or tags agree     | with custody papers?               |                                     |                       | X                     |           |              |
| 6                  | Was sample volume rec            |                             |                                    | X                                   |                       |                       |           |              |
| 7                  | Are samples within spec          |                             |                                    | X                                   |                       |                       |           |              |
| 8                  | Was proper temperatur            |                             |                                    |                                     | ×                     |                       |           |              |
|                    |                                  | Cooler Temperature          | NA                                 | °C                                  |                       |                       |           |              |
|                    |                                  |                             |                                    | °C                                  |                       |                       |           |              |
| 9                  | Is pH (acid) preservatio         |                             | to method/SOP or Client            | specified informat                  | ion?                  |                       |           | X            |
|                    |                                  |                             | amples are <b>pH</b> (acid) pre    |                                     |                       |                       |           | X            |
|                    | Were VOA vials checke            |                             |                                    |                                     |                       |                       |           | ×            |
|                    |                                  | •                           | nalyst check the sample p          | H and if necessary                  | alter it?             |                       |           | X            |
| 10                 |                                  | ne tubes capped and int     |                                    |                                     |                       | X                     |           |              |
|                    |                                  | ey contain moisture?        |                                    |                                     |                       |                       | X         |              |
| 11                 |                                  | he badges properly cap      | ped and intact?                    |                                     |                       |                       |           | ×            |
|                    |                                  |                             | ed and individually capped         | d and intact?                       |                       |                       |           | X            |
|                    |                                  |                             |                                    |                                     |                       |                       |           |              |
|                    | Lab Sample ID                    | Required pH                 | pH (as received, if required)      | VOA Headspace<br>(Presence/Absence) | Rece                  | ipt / Prese<br>Commen |           |              |
|                    | 5.004                            | (as received, if required)  | (as received, it required)         |                                     |                       | Сонинен               | · La      |              |
| P260095<br>P260095 |                                  |                             |                                    | NA<br>NA                            |                       |                       |           |              |
| P260095            |                                  |                             |                                    | NA<br>NA                            |                       |                       |           |              |
| P260095            |                                  |                             |                                    | NA                                  |                       |                       |           |              |
| P260095            |                                  |                             | NA                                 |                                     | en military salience. |                       |           |              |
|                    |                                  |                             |                                    |                                     |                       |                       |           |              |
|                    |                                  |                             |                                    |                                     |                       |                       |           |              |
|                    |                                  |                             |                                    |                                     |                       |                       |           |              |
|                    |                                  |                             |                                    |                                     |                       |                       |           |              |
| Explain            | any discrepancies: (include      | de lab sample ID numb       | pers):                             |                                     |                       |                       |           |              |

20

# Columbia Analytical

# Air Quality Laboratory 2665 Park Center Drive, Suite D Simi Valley, California 93065

# Chain of Custody Record & Analytical Service Request

|      | 1  |
|------|----|
| Page | of |

| Analytical                            | Simi Valley, | California 9 | 3065                                             | Requested 1                | urnaround Ti                          | me by Close of B | usiness Day (S | urcharges) Ple                                   | ase Circle:      |               | SAS Project                                      | No.                   |
|---------------------------------------|--------------|--------------|--------------------------------------------------|----------------------------|---------------------------------------|------------------|----------------|--------------------------------------------------|------------------|---------------|--------------------------------------------------|-----------------------|
| Services **C                          | Phone (805)  |              |                                                  | 1 Day (100%                | ) 2 Day (75%)                         | 3 Day (50%) 4 D  | ay (35%) 5 Day | (15%) 10 Day                                     | -Standard        |               | ANPO<br>ANPO                                     | 0433                  |
| An Engloves - Overed Company          | Fax (805) 52 |              |                                                  | D.O. # (D)                 |                                       |                  |                | CAS Contact:                                     |                  |               | -                                                |                       |
| Reporting Information (Company        | / Name & Add | iress)       | ,                                                | P.O. # / Billin            | g Information                         |                  |                |                                                  |                  |               |                                                  |                       |
| Weston                                |              |              |                                                  |                            |                                       |                  |                | Analys                                           | is Method        | and/or Ar     | nalytes                                          |                       |
| Okemos MI                             | -            |              |                                                  |                            |                                       |                  |                | して                                               |                  |               |                                                  |                       |
| Attention: T.1 / . m                  |              |              |                                                  | Project Name               | "WRS                                  |                  |                | 14 8                                             | 5                |               | مري                                              | ·                     |
| Attention: Ted La Marre               |              |              |                                                  |                            |                                       |                  |                | Sulfer<br>DSSO4                                  | TO 15            |               | " Bu                                             | Comments              |
| Phone Fax                             |              |              |                                                  | Project Numi               | per ToD ¢                             | £ 505-051        | ) - 00 l       |                                                  | ا ۱              | 40            | 10 /                                             | e.g. Preservative or  |
| (517/381 5920                         |              |              |                                                  | Task                       | F12634.                               | 601.001.60       | 374-00         | 2 E                                              | ارزا             | § 8           | 3/2                                              | specific instructions |
| Email Address for Result Report       | ing          |              |                                                  | Sampler (Pri               | nt & Sign)                            | 1 2/1            |                | 1 4 13                                           | EPA              | min<br>gos)   | الله عدا                                         |                       |
|                                       |              |              | <u> </u>                                         | Haam =                     | egerlind                              | year,            |                | Reduced                                          | n                | Amina<br>(sop | 1 4                                              |                       |
| Client Sample ID                      | Date         | Time         | Lab                                              | Sample Type<br>(Air/Liquid | Canister ID                           | Flow Controller  | Sample         | 12                                               | 45<br>US         | 4             | 9                                                |                       |
|                                       | Collected    | Collected    | Sample No.                                       | /Solid/Tube)               | (Bar Code#)                           | (Bar Code #)     | Volume         | . Tr                                             |                  |               |                                                  |                       |
| W-1                                   | 4/13/06      | 1504         |                                                  | Ar                         | 107-1                                 | 35-1,5-009       |                |                                                  | X                |               |                                                  | 24hr TAT+             |
| 141-1-                                | 4/13/06      |              | <b>W</b>                                         | Air                        |                                       |                  |                |                                                  |                  | X             | $\sim$                                           | · فيام                |
| Field Blank                           | 4/13/06      |              | (2)                                              |                            |                                       |                  |                |                                                  |                  |               |                                                  | Collected @ 1337      |
| FIRM DIANK                            | 1/17/00      | 177          |                                                  |                            |                                       |                  |                | <u> </u>                                         |                  |               |                                                  | Collected (* 1557     |
|                                       |              |              | <del>                                     </del> | <u> </u>                   |                                       |                  |                | <u> </u>                                         |                  |               |                                                  |                       |
|                                       |              |              |                                                  |                            |                                       |                  |                |                                                  |                  |               |                                                  |                       |
|                                       |              |              |                                                  |                            |                                       |                  |                | 1                                                |                  |               |                                                  |                       |
|                                       |              |              |                                                  |                            |                                       |                  | <del>-</del>   |                                                  |                  |               |                                                  |                       |
|                                       |              |              |                                                  | <b></b>                    | <del></del>                           |                  |                | <del>                                     </del> |                  |               | <del>                                     </del> |                       |
| <del></del>                           |              |              | <del> </del>                                     | <del> </del> -             | <u> </u>                              |                  |                | <del>                                     </del> |                  |               | <u> </u>                                         |                       |
|                                       |              |              | ļ                                                | <u> </u>                   |                                       |                  | <u> </u>       |                                                  |                  |               |                                                  |                       |
|                                       |              |              |                                                  |                            |                                       |                  |                |                                                  |                  |               |                                                  |                       |
|                                       |              |              |                                                  |                            |                                       |                  |                |                                                  |                  |               |                                                  |                       |
|                                       |              |              |                                                  |                            |                                       |                  | <del></del>    |                                                  |                  |               |                                                  |                       |
|                                       |              |              | <del></del>                                      | [                          |                                       | <u> </u>         |                | <del></del>                                      | <del></del> -    | <u></u>       | <del></del> -                                    | <del></del>           |
| · · · · · · · · · · · · · · · · · · · |              | <u> </u>     | <u>  •                                     </u>  | <u> </u>                   |                                       | <u> </u>         |                | ļ                                                |                  |               |                                                  |                       |
|                                       |              |              | <u></u>                                          |                            |                                       |                  |                | <u> </u>                                         |                  |               |                                                  |                       |
|                                       |              | _            |                                                  | [                          |                                       |                  |                |                                                  |                  |               |                                                  | 1                     |
| Report Tier Levels - please sele      |              |              | <del></del>                                      | <u> </u>                   | · · · · · · · · · · · · · · · · · · · |                  |                |                                                  |                  |               |                                                  | irements (MRLs, QAPP) |
| Tier I - (default if not specified) _ |              |              | , Raw Data, S                                    | pectra) 10%                | Surcharge                             |                  | EDD required   | Yes / No                                         |                  |               | 1464                                             | nr TAT on             |
| Tier II (QC forms)                    |              | Other        | <u> </u>                                         | <del></del>                |                                       |                  | Туре:          |                                                  |                  |               |                                                  |                       |
| Relinquished by (Signature)           | <u>)</u>     |              | 2/13/06                                          | Time:                      | Received by: (S                       | Signature)       | IEX            |                                                  | Date:            | Time:         | 1 011/2                                          | samples               |
| Relinquished by: (Signatüre)          | - A          |              | 7/ 2/0 Q                                         | Time:                      | Received hv: /S                       | icuatura)        | <u> </u>       |                                                  | Date:            | Time:         | send                                             | vial email to         |
| - Congressor                          | Felle        | 9            | Jaio.                                            |                            | Received/by (S                        | I Halle          | WG             |                                                  | Date:<br>4/14/06 | 0920          | noos                                             | avatz 2 artusala      |
| Relinquished by: (Signature)          | <u></u>      |              | Date:                                            | Time:                      | Received by: (S                       |                  |                | 7                                                | Date:            | Time:         | Cooler / Blan                                    | nk - U                |
| N .                                   |              |              |                                                  | <u> </u>                   | L                                     |                  |                |                                                  | <u></u>          | <u> </u>      | Temperature                                      | °~940                 |

Water sample from bason



4125 Cedar Run Rd., Suite B Traverse City, ME 49684 Phone 22 I-946-4747 Fax 231-946-8741 www.sosenelytical.com

COMPANY:

CHERRY BLOSSOM, L.L.C.

SOS PROJECT NO:

055891

NAME:

PROJECT NO:

CALLC TEST FOR TVCWWTP

SAMPLED BY:

MIKE LOCKTOSH/CBLLC

WESN:

DATE SAMPLED: TIME SAMPLED: 12/22/05

WELL PERMIT: TAX ID:

SAMPLE MATRIX:

WATER

LOCATION:

10190 MUNRO RD

DATE RECEIVED:

12/22/05

WILLIAMSBURG

TIME RECEIVED:

10:28 AM

Mi

COUNTY:

TWP:

INORGANICS

|    | 10.00                        |                                       |       |            |        |           |                                |
|----|------------------------------|---------------------------------------|-------|------------|--------|-----------|--------------------------------|
|    | Analysis                     | Concentration                         | LOD   | Unita      | Anabet | Completed | Drinking Water<br>Red LimitMCL |
| S  | MPLE ID: LAGOON 3"           |                                       |       |            |        |           |                                |
| ı  | ARSENIC EPA 206.2 GFAA       | 0.004                                 | 0.002 | mg/L (PPM) | BM     | 12/29/05  |                                |
| 2  | BOD 5-DAY EPA 405.1          | 7,650                                 | 4,000 | mg/L (PPM) | KMC    | 12/27/05  |                                |
| 1  | Cyanide-totāl epa 335.3      | 0.009                                 | 0.005 | mg/L (PPM) | KMC    | 1/3/06    |                                |
| 8/ | MPLEID: LAGOON 8"            | · · · · · · · · · · · · · · · · · · · |       |            |        |           | <del></del>                    |
| 2  | arsenic epa \$06.2 gfaa      | 0.005                                 | 0.002 | mg/L (PPM) | BM     | 12/29/05  |                                |
| 2  | BOD 5-DAY EFA 405.1          | 8,340                                 | 4,000 | me/L (PPM) | KMC    | 12/27/05  |                                |
| 2  | CYANIDE-TOTẬL EPA 335.3      | 0.019                                 | 0.005 | mg/L (FPM) | KMC    | 1/3/06    |                                |
| 8/ | MPLE ID: Plant water eff/vcn |                                       |       |            |        |           |                                |
| 3  |                              | 0.005                                 | 0.002 | mg/L (PPM) | BM     | 12/29/05  |                                |
| 3  | BOD 5-DAY EFA 405.1          | 10,500                                | 4,000 | mg/L (PPM) | KMC    | 12/27/05  |                                |
| 3  | CYANIDE-TOTAL EPA 335.3      | מא                                    | 0.005 | mg/L (PPM) | KMC    | 1/3/06    |                                |

NO = NOT DETECTED LOD = LIMIT OF DÉTECTION SMCL = FEDERAL NON-ENFORCEABLE LIMIT MCL - MAXIMUM CONTAMINANT LEVEL 2.u. = STANDARD MUNITS REPORTED AT 25 C DISS = DISSOLVED

Page 1 of 1

LAB MANAGER

50S ANALYTICAL, INC. IS CERTIFIED FOR COMPLIANCE MONITORING UNDER THE SAFE DRINKING WATER ACT.



4129 Cedar Run Rd., Suite () Traverse City, 14 49684 Phone 231-946-6747 Pto: 231-946-8741 WWW-csonavalytical.com

COMPANY:

CHERRY BLOSSOM, L.L.C.

SOS PROJECT NO:

055489

NAME:

PROJECT NO:

SAMPLED BY:

DEAN LEWIS-BO EGAN/ISE

WSSN:

02-061-59

UATE SAMPLED:

11/23/2005

WELL PERMIT: TAX ID: LOCATION:

TIME SAMPLED:

10190 MUNRO RD

SAMPLE MATRIX:

WATER

WILLIAMSBURG

DATE RECEIVED:

11/28/2005

M

TIME RECEIVED: 9:05 AM

COUNTY:

"Soils reported on a wet weight basis"

TWP; INORGANICS

| No: Ametrain                             | Concentration | LOD | Unite      | Anelyes | <u>Date</u><br>Completed | Drinkina Weber.<br>Reg Limit/MCL) |
|------------------------------------------|---------------|-----|------------|---------|--------------------------|-----------------------------------|
| SAMPLE ID: WRS-A UPPER RETENTION POND    |               |     |            |         |                          |                                   |
| 10 CHLORIDE EPA 325.2                    | 865           | 15  | mg/L (PPM) | KMC     | 11/29/2005               |                                   |
| SAMPLE ID: WRS-B PARKING RUN-OFF         |               |     |            |         |                          |                                   |
| 1) CHLORIDE EFÀ 325.2                    | 105           | . 5 | mg/L (PPM) | KMC     | 11/29/2005               |                                   |
| SAMPLE ID: WRS-¢ MAINTENANCE BUILDING PO | ND            | ·   |            |         |                          |                                   |
| 12 CHLORIDE EPÅ 325.2                    | 200           | 5   | mg/L (PPM) | KMC     | 11/29/2005               |                                   |

ND = NOT DETECTED LOD = LIMIT OF DETECTION SMCL = FEDERAL NON-ENFORCEABLE LIMIT MCL = MAXIMUM CONTAMINANT LEVEL ø,u, ≈ STANDARD pH UNITS REPORTED AT 26 C DISS = DISSOLVED

APPROVED BY:

SHANNA BHEA

Page 1 of 1

LAB MANAGER